FLUX TO FLOW: A CLEARER VIEW OF EARTH’S WATER CYCLE
VIA NEURAL NETWORKS AND SATELLITE DATA
BY
ALBERT ERIC LARSON

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
IN
CIVIL AND ENVIRONMENTAL ENGINEERING

UNIVERSITY OF RHODE ISLAND
2023



DOCTOR OF PHILOSOPHY DISSERTATION
OF
ALBERT ERIC LARSON

APPROVED:

Dissertation Committee:

Major Professor Ali Shafgat Akanda
Soni Pradhanang
Thomas Boving

Brenton DeBoef
DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND
2023



ABSTRACT

Earth’s weather and climate changes dynamically, and humans must monitor the
evolution of our environment or fail to plan and adapt. Water is our most valuable
resource, and as such it is of the utmost importance to have a continuous view of
its movements as water cycles over, in, and under land, in the atmosphere, and in
the sea. One way that we observe the water cycle is with satellite measurements.
Unfortunately, the resolution of these instruments is typically too coarse to visualize
many transient phenomena of interest. If their vision is fine enough, the instrument
captures only a small space of Earth at any given time. Furthermore, it is valuable
to connect satellite-derived water cycle measurements of large watershed basins with
ground truth observations of the rivers flowing through these basins. These connection
operations, though, are time and cost prohibitive or limited in performance, with
efficient functions veiled behind black box closed-source solutions. Herein, all of the
above facts are investigated under the veil of a single name, Flux to Flow (F2F).
The name Flux to Flow encapsulates how the work takes several fluxes of geospatial
data and transforms them into more coherent flows of knowledge. F2F performs
metrologically well in the operation of streamflow forecasting when focused solely
on a single or a few hydrological monitoring nodes at a time. Based on the results,
future work might entail scaling up of the system to many computing nodes running
in tandem, observing more adjacent outputs, or in its application as a standard device

in connected municipal systems.
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PREFACE

This thesis follows the manuscript format. Each of the three within carry a similar
structure as is typical of the structure one might produce for an academic journal.
The three cords form one strand that benefit from being studied together.

Manuscript 1, “Discerning Hydroclimatic Behavior with a Deep Convolutional
Residual Regressive Neural Network”, looks at four United States basins and a single
streamflow measurement per basin. It also considers just one neural network archi-
tecture called Flux to Flow. Upon further consideration, we have realized that the
structure itself is more aptly called derrnn and pronounced discern. It is called this
for two reasons: 1, because of the nature of a trained mind’s ability to learn how
to discern the truth from a flurry of information; and 2, because it is an acronym
representing the phrase “deep convolutional residual regressive neural network”. The
name dcrrnn was accidental and an obfuscation device just to conceal as manuscript
1 was submitted to a double-blind submission. It was undesirable to share the name
Flux to Flow because of our ties to the name on the web already. As the work has
progressed, derrnn is now understood more appropriately as a very specific neural net-
work construction, whereas F2F encompasses the macroscopy of the work. Though
there is only a single architecture used in this manuscript, it is both derrnn and Flux
to Flow. This study considers about seven years of data, considering a daily time
scale.

Manuscript 2, “Deep Convolutional Residual Regressive Neural Networks and Sea
Surface Temperatures from Aqua and Argo in the 2000s”, focuses in greater detail
on a single water-focused essential climate variable (sea surface temperature). The
deployed experiments, similar to manuscript 1, features solely the derrnn architecture
under the name Flux to Flow. The time series studied is relatively short in time,
only considering a single year of monthly measurements; however, the size of the

geography studied is quite large, considering big pieces of the Atlantic, Pacific, and

v



Indian oceans.

Manuscript 3, “Holistic Water Cycle Analysis via the Confluence of Climate
Model, Satellite, Ground Truth, and Machine Learning Signal Processing Technolo-
gies: Two North American Transboundary River Watersheds”, is best understood as
the confluence of manuscripts 1 and 2. We fuse measurements of sea surface tempera-
ture with measurements of land flow and create images that do not contain nan values,
a sometimes frustrating numerical data structure component. We compare the per-
formance of using these fused images against the original technique from manuscript 1
of simply clipping and z-scoring land surface flows and neglecting the ocean. We look
at more output targets per moment than manuscript 1, but fewer than manuscript
2. We also use several different neural network constructions to compare the derrnn

structure against other simpler neural network structures.
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1.1 Abstract

The impact of climate change continues to manifest itself daily in the form of
extreme events and conditions like droughts, floods, heatwaves, and storms. Bet-
ter forecasting tools are mandatory to calibrate our response to these hazards and
help adapt to the planet’s dynamic environment. Here, we present a deep convolu-
tional residual regressive neural network (derrnn) platform called Flux to Flow (F2F)
for discerning the response of watersheds to water cycle fluxes and their extremes.
We examine four United States drainage basins of varying acreage from smaller to
very large (Bear, Colorado, Connecticut, and Mississippi). F2F combines model and
ground observations of water cycle fluxes (precipitation, soil moisture, surface runoff,
sub-surface baseflow) to simulate, visualize, and analyze watershed basin response
to the varying climates and magnitudes of hydroclimatic fluxes in each river basin.
Experiments modulating time lag between remotely sensed and ground truth mea-
surements are performed to assess the metrological limits of forecasting with this
platform. The resultant mean Nash Sutcliffe and Kling Gupta efficiency values are
both of greater value than 90%. Our results indicate that F2F can be a powerhouse
for forecasting watershed response to hydroclimatic extremes in a changing global

climate.

1.2 Keywords

water, climate, sustainability, supervised representation learning, societal consid-

erations

1.3 Introduction

Water connects all living things on Earth. It is wielded to power electronic devices,
enables plants, food, and animals to grow, serves as the living and recreational space

for all creatures, and is nourishment to the human body. It has been both the



subject of, platform for, and weapon of choice in numerous conflicts. Global hydraulic
infrastructure is highly variable. Dirty water can be a source of disease and death.
It is branded, modified, and sold at differing levels of purity and concentration. The
cost of equipment to control the flow of water is high, maintenance is frequent, and
changes in demand and supply for water as a resource are constant sources of concern.

Human activities have changed and continue to change Earth’s environment. The
changes are visible in both short (meteorological) and long (climatological) time scale
responses ([58]). As the temperature of Earth increases, the amount of snow and sea
ice loses volume over time ([52]; [46]), sea levels rise and swallow up once inhabited
land ([59]; [55]), storms intensify ([37]), droughts last longer ([62]), floods become
more severe ([45]; [29]), animal populations go extinct ([50]), and the availability of
freshwater becomes more unreliable ([21]). Concurrently, manmade Earth observation
and control systems continue to improve ([15]; [47]).

Watershed modeling is an important field of research that involves predicting
the movement of water through the Earth’s system. Earth’s system consists of the
land, atmosphere, and ocean. Many models have been developed to simulate and
predict hydrologic processes, including rainfall, runoff, and evapotranspiration. One
popular model is the Soil and Water Assessment Tool (SWAT'), which has been used
extensively to model hydrology and water quality in watersheds ([1]). Another model,
the Variable Infiltration Capacity (VIC) model, has been employed to study changes
in streamflow and soil moisture ([6]). General circulation models (GCMs) are an
additional important tool in hydrology modeling. GCMs simulate the Earth’s climate
system, including atmospheric circulation, ocean circulation, and the cryosphere, and
provide predictions of future climate conditions ([38]). These models have been used
to study the impacts of climate change on water resources and hydrologic processes,
such as changes in precipitation patterns and snowmelt runoff ([64]). In addition,

GCMs can be coupled with regional ocean modeling systems (ROMS) to study ocean



circulation and its impact on coastal ecosystems ([26]). The Massachusetts Institute
of Technology General Circulation Model (MITgcm) is another popular model used
to simulate ocean circulation and study the impacts of climate change on marine
ecosystems ([43]).

Here, we approach the topic of watershed modeling with a deep neural network.
We observe the connections between model output of four United States drainage
basins to actual gauged in the river measurements. All basins are larger than a million
acres and thus provide ample data to observe how changes in runoff and subsurface
flow impacts the quantity of water discharging from the major river within the basin.
Given our results, we envision future work applying the same tools to study and

consider all of Earth’s watersheds at fine fidelity.

1.4 Materials & Methods

1.4.1 Study Areas

Four United States drainage basins with areas of greater than one million acres
each were selected as study areas and are shown in Figure 1.1. The Bear River and
Connecticut River watersheds are significantly smaller than either the Mississippi
River or the Colorado River basins. The satellite imagery used observes approxi-

mately 100 square kilometers of area (on the order of 25,000 acres) in each pixel.

1.4.2 Satellite Derived Observations

For each basin there are two input images extracted from raw data obtained
through the NASA Goddard Earth Sciences Data and Information Services Center.
The raw data is National Land Data Assimilation System (NLDAS) model output.
NLDAS is a project run by several United States based institutions and universities.
NLDAS takes continental scale meteorological data parameters (e.g., air temperature,

wind speed, surface pressure, precipitation, incoming radiation, specific humidity) as



input and deterministically creates water and energy flux layers as outputs. The
NLDAS project in its second phase applies several different water and energy balance
algorithms to create flux outputs from one common set of meteorological inputs.
Here, the Noah water and energy budget algorithm is used. The channels of interest
are components of water flux, specifically surface and sub-surface runoff, as they
collectively represent the lateral movement of liquid water along and under the surface

towards the terminal drainage point at a given point in time ([67]; [41]).

1.4.3 Ground Truth Measurements

Concurrent with the two NLDAS channels is a single gauged in the river stream-
flow measurement. Daily streamflow measurements from sites near the terminus of
each basin are obtained from the United States Geological Survey’s National Water
Information System. The USGS operates nearly 30,000 daily streamflow data collec-
tors ([17]). Sites were selected based on the availability, proximity to the terminal
point of the basin, and relative continuity of data. Gaps in data collection are solved
with linear interpolation.

Ground truth streamflow data are critical for hydrologic modeling, as they provide
a means of validating and calibrating model results. The USGS National Water
Information System (NWIS) is a primary source of ground truth streamflow data in
the United States ([54]). The NWIS is a network of over 1.5 million sites that collect
measurements of water, some of which are then used to calculate streamflow ([48]).
These gauges are operated by the USGS in collaboration with other federal, state, and
local agencies, as well as private organizations. The data collected by the NWIS are
used for a wide range of applications, including flood forecasting, water management,
and environmental assessments ([57]).

The NWIS stream gauges provide a valuable resource for monitoring and manag-

ing the nation’s water resources. The network covers a broad range of water bodies,



including rivers, streams, lakes, and reservoirs, and the data collected help to sup-
port a variety of water-related activities. For example, the streamflow data collected
by the NWIS are used to support flood forecasting efforts, which are essential for
public safety and property protection. In addition, the data are used to assess water
availability for agriculture, industry, and domestic use, and to monitor the health of
aquatic ecosystems. Finally, the NWIS streamflow data are used by researchers and
policy-makers to develop and refine models of the water cycle, which are critical for
understanding the impacts of climate change and human activities on water resources.

The USGS has a long history of collecting and analyzing streamflow data, dating
back to the late 19th century when the agency was established ([5]). Since then, the
network of stream gauges has expanded and become more sophisticated, incorporating
new technologies such as acoustic Doppler current profilers and advanced telemetry
systems ([48]). The USGS has also played a key role in developing standardized
methods for collecting, processing, and analyzing streamflow data, which have been
adopted by other countries around the world ([30]). Today, the USGS continues to
operate and maintain the largest network of stream gauges in the United States, pro-
viding a valuable resource for hydrologic research and water resources management
([57]). With the growing importance of water resources management and the increas-
ing threat of climate change, the role of the NWIS in monitoring and managing the

nation’s water resources is more critical than ever.

1.4.4 Data Collection and Preprocessing

For this study, we looked at the time range starting on January 1, 2015, until the
most recent output available, March 1, 2022. The NLDAS model output is available
in a monthly and hourly product. We combine the hourly data available for surface
and subsurface streamflow into a daily product. The raw hourly NLDAS product

with all variables is a directory sized 351 gigabytes comprised of 62,805 hourly files.



The summing and extraction of lateral flows shrunk the total file size by a factor of
more than 150. Each raw data file consumes 5.8 megabytes of disk space, while each
daily surface and subsurface flow extraction 822.7 kilobytes. Filtered data consumes
only 2.1 gigabytes and can easily be held on a graphical processing unit when trained
with the neural network. File size decreases further when clipped to a particular
basin. Images are z-scored relative to themselves, while gauged streamflow data is
z-scored relative to the entire time series of seven years. Whitening has been shown

to improve the performance of training a neural network ([36]; [13]).

1.4.5 Treatment

For this experiment, we constructed a deep, convolutional, residual, regressive
neural network. The images of Earth’s surface and subsurface water flow are passed
through this network. Eventually, the transformed images reach a destination where
the image shapes have been constrained in size to match that of the target of the
input pair; here, the target is one pixel as the daily value for gauged streamflow is a
single physical measurement. The problem is one of regression because the prediction
of streamflow is continuous and can theoretically be any value greater than zero. We
use convolutional neural networks because our input to the network is a sequence of
two channel images ([53]). We also use residual learning, which allows us to make the
network very deep but control the opacity of the initial structure of the image. This
makes training faster ([27]). Rectified linear unit activation functions are applied in
all but the last layer of nodes, and batch normalization is used in the residual layers
([2]; [33]). Batch normalization is like the z-score treatment in our preprocessing step.
Finally, we selected a variant of stochastic gradient descent for optimization of the

neural network nodes ([3]; [39]).



1.5 Results

Hourly NLDAS model outputs of surface and subsurface flow are summed to daily
accumulations over the time span of January 1st, 2015, to March 1st, 2022. This
time series is 2,617 long comprised of two channel images. Channels are surface and
subsurface flow measured in units in kilograms per square meter. Units are analogous
to the weight of water in a location. Sample observation output from each basin
capturing flow behavior on June 6th, 2021, is displayed in Figure 1.2. The effects of
spatial resolution are apparent, as the Bear River and Connecticut River basins have
pronounced rectangular edges due to their relatively small size. This pixelation effect
is not present in the Mississippi River and Colorado River observations of lateral flow
from the basin view at this constrained figure size.

Gauged streamflow measurements of the four target rivers are significantly dif-
ferent in magnitude from one another; therefore, we process each with a z-score
treatment to center their mean values around the number zero and standardize each
increasing and decreasing integer around intervals of standard deviation. Figure 1.3
shows plots of the gauged streamflow measurements of each basin are plotted in two
ways. The four individual strip charts show the change in streamflow over time,
and the single overlapping histograms show how often actual measurements in the
respective basin occur relative to the average discharge. This is a single dimensional
z-scoring system. We also perform a two dimensional treatment to each of the in-
put channels, surface, and subsurface streamflow. Whereas the 1-D treatment uses
the entire time series of gauged streamflow measurements for computation, 2-D z-
scores are computed based on a single image at a time. Modifiable hyperparameters
controls of the network are basin under observation, lag in time between input and
output datasets, number of training epochs (forward and backward passes of the neu-
ral network) and the ratio of training data to testing data. There is also an override

for stopping the model training early when the training data has a Nash Sutcliffe



efficiency (NSE) value of a variable efficiency percentage.

Figure 1.4 shows a sample output from one configuration of the neural network.
The topmost graph illustrates the time series of discharge measurements in cubic feet
per second of the Bear River. This graph is rotated ninety degrees relative to its
sibling hydrograph in Figure 1.3. There is a notable seasonality to this streamflow
measurement of Bear. Spring brings melting snowpack in the nearby mountainous
terrain and subsequent increases in neighboring river flows. Spring melting snow in
2021 appears more subdued than all other years observed. The Bear River drainage
basin is located in between the Great Salt Lake and Yellowstone National Park in the
Rocky Mountain region of the United States. The eponymously named river flows in
a counterclockwise loop.

The second row plots each modeled observation in the time series against its
respective actual measurement. On the left is a study of the model output ordered on
the x-axis from low to high flows and corresponding actual measurement on the y-axis.
The right plot retains the same axis labels, but instead observes spatial proximity of
values. Darker points are more commonly occurring ranges of flow. The left plot
also contains two lines of best fit, the ideal or desired line found from the data, and
the actual line of fit as exists between the actual gauged streamflow and the neural
network model output of streamflow from surface and subsurface flow.

The third and final row shows epochal values during the neural network training
process. On the left, the average error between the actual measurements and network
output declines as the model goes through its iterations of propagate and backpropa-
gate. Concomitant with error vs. epoch is efficiency vs. epoch. As the error declines
towards zero, the NSE measurement increases towards 100%. Here, neural network
set to stop at an NSE value of 95%, which occurs in the sixth epoch.

We perform nine iterations of the configuration of 252 experiments. For each of

the four basins, there are sixty three experiments per iteration based on nine possible



values of lag and seven possible values of training and test data split, equating to
2,268 individual runs of the same neural network. Each experiment either stops when
the measurement of average NSE of the training dataset within an epoch equals
95% (bottom right, Figure 1.4) or the total number of epochs of back and forward
propagation of the entire basin dataset reaches 100. Computations are constrained
to a single node with two central processing units, a single NVIDIA GeForce RTX
2080 Ti graphical processing unit, and no more than 130 gigabytes of random access
memory. Our platform is written in the python programming language and managed
with the miniconda package manager. The total run time to compute the experiments

within was 83.0 hours.

1.6 Discussion

The results presented indicate relatively favorable performance of the neural net-
work architecture when transforming of surface and subsurface flow into a prediction
of basin gauged streamflow; the kernel density estimates (KDE) in Figure 1.5 and Fig-
ure 1.6 illustrate this point. We executed a total of more than 2,200 experiments in
total using the common architecture. We use two hydrological metrics: Kling Gupta
(KGE) and Nash Sutcliffe (NSE) ([49]; [25]; [24]; [40]). For each of these metrics, the
peak resultant merit value of the 2,268 experiments is greater than ninety percent
with a standard deviation of less than 0.06. The results are tolerant to lagging the
data beyond the residence time of water in the atmosphere ([63]; [20]).

Others have observed the changing water quantity of the Mississippi. One study
used NLDAS data focused on a subsection of the Mississippi with a higher quantity
of streamflow target sites ([51]). Another group considers a different data system
altogether for watershed modeling on the upper Mississippi basin ([12]). Some groups
suggest that NLDAS is too simplistic and decided to create their own blend. They

take a much broader approach than the scope of the problem observed here ([60]).
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The same is true for another study, where the study considers several different models
and about 1,000 small river basins ([8]). Some use meteorological data as a predictor
for electric outages, as seen in a study looking at Connecticut. They, too, use the
Nash Sutcliffe efficiency as a figure of merit ([68]) but are approaching the problem
with a different lens. Their target is a smaller population and the risk of being without
electric power.

This process can be expanded in different ways. Our study relies on the inter-
nal programming of NLDAS to compute surface and subsurface flow. There is much
uncertainty in these observations based on the natural heterogeneity of the land sur-
face. We do not look at the independent influence of any single forcing variable. Take
snow, for example. In large mountain proximal basins such as those near the Rocky
Mountains or Himalayan ranges, accumulation of subzero degrees Celsius water in
solid form provides a continuous upland buffer tank for the communities with which
the river down land serves. As the relative presence of carbon dioxide increases and
the land temperature responds in agreement, the duration and scale of snow melt
and sea ice responds. It is challenging to equate with exact certainty how much solid
water exists. To a degree, interpolating satellite data with gauged data is sufficient,
but these apparatuses are challenging to maintain in cold temperatures or in places
of very high altitude. One could elect to observe more individual locations as tar-
gets, therefore making the relationship no longer image to single value at a given
time, but instead image to image. There are studies that consider the impact of slow
moving oceanic and atmospheric abnormalities upon the hydrology of the land. Inde-
pendent variables include the Madden-Julian oscillation ([35]), the El Nino—Southern
Oscillation ([31]), and the Atlantic meridional overturning circulation ([34]).

While the NLDAS product used here is of a particular spatial fidelity, the Global
Land Data Assimilation System is coarser in its resolution. It is beneficial to the

scientific community to have a clearer picture of the meteorological forcing and en-
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vironmental responses in the ocean, land, air, and mixed interfaces. One could use
this framework to fuse the high resolution NLDAS product with the global GLDAS
product and evaluate the result according to one common set of metrics. The soft-
ware could be packaged and ported to use with an already existent embedded in
situ mesh system to provide forecasting information. Instead, one might consider
looking at a different time signature, such as seasonally decomposed but over several
years. Instead, one might introduce higher resolution localized water quality data
into the model. By tracking environmental statistical anomalies relative to other
points in time and relative to the global community, municipal decision makers can
clue into the trajectory of their land, their structures, and their constituents within.
The choice to retreat is not to be approached lightly, but in some instances is be-
coming the necessary measure ([56]; [28]). This intelligence can also be placed in the
hands of consulting engineers to distribute in new and existing infrastructure. Logic
is necessary to manage assets of complex hydraulic systems (pumps, motors, chemi-
cal feed, aeration, dewatering, gates, valves), and digital twin systems are becoming
fashionable.

Water is a vital resource for human societies, and managing water resources is a
complex task that requires continuous attention and adaptation. In recent years, the
world has witnessed several extreme events that have highlighted the importance of
effective water management strategies. Two such events that occurred on opposite
ends of the water quantity spectrum were the 2022 Pakistan and Mississippi floods
and the 2017 Cape Town South Africa water crisis.

In 2022, Pakistan and the United States were hit by massive floods that caused
widespread devastation. In Pakistan, heavy monsoon rains led to flooding across the
country, affecting millions of people and causing significant damage to infrastructure
and property ([23]). Similarly, in the United States, the Mississippi River experienced

severe flooding due to heavy rainfall, causing extensive damage to homes, businesses,
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and farmland ([10]). These events demonstrate the devastating impact that extreme
water events can have on communities and the urgent need for improved water man-
agement strategies.

Strong rotational winds cause the hurricanes and cyclones which carry bulk quan-
tities of water. These catastrophes are notably in their brute strength, and historically
have caused the displacement of people, loss of lives, damage to infrastructure, and
disruption of social and economic systems. One of the most notable wind driven
water-based disasters in recent years was Hurricane Harvey in 2017, which caused
catastrophic flooding in Texas and Louisiana ([7]). The storm resulted in over eighty
fatalities and more than 125 billion in damages, making it one of the costliest natural
disasters in US history. The intensity and frequency of hurricanes are expected to
increase due to climate change, resulting in an increased risk of devastating floods
and damage to coastal infrastructure ([18]). Another significant event was Cyclone
Idai, which hit Mozambique in 2019, causing widespread damage and loss of life. The
storm resulted in over 1,000 fatalities and an estimated economic loss of over 2 billion
([32]). Cyclone Idai was one of the worst weather-related disasters to hit the south-
ern hemisphere, highlighting the increasing vulnerability of developing countries to
extreme weather events.

On the other end of the water quantity disaster spectrum, the 2017 Cape Town
water crisis brought attention to the challenges of managing a sustained lack of re-
newable water resources over a prolonged period of time. The city of Cape Town,
South Africa, faced an unprecedented drought that lasted for several years, leading to
a severe water shortage ([4]). The crisis prompted the implementation of strict water
rationing measures and increased investment in water conservation and management
strategies. This event highlighted the importance of proactive and adaptive water
management strategies in the face of changing environmental conditions. Another

notable drought event is the recent ten year drought in California, which has led to
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significant economic losses with farmers and other industries struggling to cope with
reduced water supplies ([11]). Although, California has seen an anomalously large
influx of water due to an atmospheric river unleashing massive quantities of snow and
rain ([66]; [22]; [14]).

The impact of these water shortages can be devastating, especially in developing
countries where water scarcity can lead to malnutrition, disease, and poverty ([61]).
The impact of water-based disasters is not limited to the immediate physical damage
they cause. These disasters can have long-lasting effects on the environment, including
water pollution and ecosystem degradation. For example, the 2011 Fukushima nuclear
disaster in Japan led to the release of radioactive materials into the ocean, resulting in
significant environmental damage ([42]). The incident had a significant impact on the
marine ecosystem, with some species of fish still showing elevated levels of radiation
years after the disaster.

Improving water management strategies requires a multi-faceted approach, in-
cluding better monitoring systems, enhanced cooperation with the environment, and
increased public awareness and participation. Effective water management strategies
should aim to balance the competing demands of human society and the natural en-
vironment while promoting sustainable and equitable use of water resources. The
opportunities to improve our monitoring systems are many; however, more people
are needed in the conversation to consider how we might better cooperate with the
environment.

Effective management and mitigation of water-based disasters require coordinated
efforts from multiple stakeholders, including governments, non-governmental organi-
zations, and the private sector. Such efforts include improving early warning systems,
developing more resilient infrastructure, and promoting sustainable water manage-
ment practices. Early warning systems play a crucial role in preparing for and re-

sponding to water-based disasters. These systems can provide timely and accurate
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information to people in affected areas, enabling them to take necessary precautions
and evacuate if necessary ([19]). The development of more resilient infrastructure is
also essential in mitigating the impact of water-based disasters. For example, the use
of green infrastructure, such as rain gardens and permeable pavement, can help to
reduce the impact of flooding by slowing down the rate at which water enters the
drainage system ([65]). Additionally, the use of nature-based solutions, such as wet-
land restoration, can help to improve the overall resilience of ecosystems to climate
change and extreme weather events ([9]).

Finally, it is crucial to recognize that the impacts of water-based disasters are
not distributed equally. Vulnerable populations, such as those living in poverty or in
marginalized communities, are often disproportionately affected by these events ([16]).
In addition, climate change is exacerbating the frequency and severity of water-based
disasters, particularly in regions with already limited resources and infrastructure
([44]). Therefore, addressing the root causes of vulnerability and promoting equity
in disaster management and response must be an integral part of efforts to mitigate

the impacts of water-based disasters.

1.7 Conclusion

In this study, we introduce a fresh perspective to studying and understanding the
water cycle with a learned representation using modern techniques and data systems.
Our results show that a deep convolutional residual regressive neural network (dcrrnn)
combined with water flux and gauged streamflow data can exhibit strong forecasting
performance according to standard hydrological statistical figures of merit. We used
the derrnn concept to develop a platform called Flux to Flow (F2F) and examined
four major river basins across the United States. F2F can provide strong forecasting
performances (Nash Sutcliffe and Kling Gupta efficiency above 90%) in most cases

and at various time lags. Through the careful use of visuals and data management,
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this approach can provide satisfactory performance for various locations, degrees of
fidelity, time scales, and parameters of interest for the water resources and climate

science community.
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1.8

1.9

1]

Code Availability

Scripts are available at https://github.com/albertlarson/f2f
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1.10 Appendix

Figure 1.1: Drainage basins under investigation
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Figure 1.3: Strip chart and histogram plots of z-scored gauged streamflow observa-
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Figure 1.5: Kernel Density Estimates of the 2,268 experiments. Left shows grand
NSE and KGE.
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2.1 Abstract

Sea surface temperature (SST) is an essential climate variable that can be mea-
sured via ground truth, remote sensing, or hybrid “model” methodologies. Here, we
celebrate the progress of high-resolution sea surface temperature via the acknowl-
edgement of a few technological advances from the late 20th and early 21st century.
We develop a deep convolutional residual regressive neural network (dcrrnn) plat-
form called Flux to Flow (F2F) and fuse AMSR-E and MODIS into a higher resolu-
tion product for capturing gradients and cloud gaps that are otherwise unavailable.
Specifically, we utilize three snapshots of twelve monthly SST measurements in 2010
as measured by the passive microwave radiometer AMSR-E, the visible and infrared
monitoring MODIS instrument, and the in situ Argo dataset ISAS. The performance
of the platform and success of this approach is evaluated using standard figures of
merit. Looking forward, we hope to integrate F2F with future satellite data streams
such as the ECOSTRESS or Surface Water Ocean Topography (SWOT) datasets to

enhance the precision of coastal regions observations of water.

2.2 Introduction

Water is both an essential and abundant resource on Earth, and its availability
and quality are critical for sustaining life and ecosystems. Though it is abundant, the
majority of Earth’s water, about 97%, is found in the ocean, while the remaining 3% is
freshwater found in glaciers, lakes, rivers, and underground aquifers on land. Water is
not only crucial for sustaining life, but it also plays a vital role in shaping the Earth’s
climate and weather patterns. One significant but understudied climate variable that
hydrologists consider is sea surface temperature. SST has a profound impact on the
water cycle, specifically evaporation ([18]). Over ocean anomalies like atmospheric
rivers can lead to both anomalous and enormous quantities of meteorological water

falling on land ([3]). The same is true in the reverse, as the failure of the rains in India
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are influenced by the status of the nearby Bay of Bengal and Indian Ocean ([21]).
Understanding the relationship between sea surface temperature and the water cycle
is critical for predicting and adapting to extreme events, managing water resources,
and sustainable the global ecosystem.

Evidence continues to mount that human beings through industrialization have
modified and are continuing to significantly modify the climate. However, the mod-
ern cause for concern is the rate at which our climate has changed rather than the
Boolean of has it or has it not. Measurements of carbon dioxide (CO2) tell the story:
detected values of atmospheric CO2 have increased by 50% of the starting value at the
advent of industrialization ([4]). Invariant to latitude and longitude, the impacts are
felt everywhere. Earth’s response to our stimuli manifests in the form of heat waves,
stronger storms, longer periods of drought, greater impulses of meteorological water
accumulation over land, and a general increase in environmental variability. While
in wealthy communities, modern civil infrastructure serves as a boundary layer to
environment-related catastrophes, the poor and powerless are unequally yoked. One
must consider also the importance of the ecology itself. As humanity conquers the
environment, in what state are the creatures of the atmosphere, land and oceans?
What does the next five, ten, five hundred years look like at the current rate? If
deemed unacceptable, what changes can be made to mitigate or adapt to implica-
tions of past and present poor actions? What are the global environmental quality
standards? How can standards be enforced in unequal nation states?

There are many global environmental observation systems that study the entire
Earth from a distance. The sheer volume of effort and observation output can be
gleaned by world wide web crawling one example: the details of the Coupled Model
Intercomparison Project website. Through this project, expert parties from all over
the globe share the effort of simulating Earth by focusing on their separate silos

whilst having common tunnels to assemble, communicate, benchmark, and improve.
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Remote sensing (RS) instruments have recently (1950 — present) grown in frequency
of occurrence, capability, availability, and affordability. Attached to planes, balloons,
spacecraft, or other autonomous means, these devices capture images in a controlled
fashion over medium to large portions (swaths) of the land, atmosphere, and ocean.
The growth of global RS data is pivotal to our ability to continuously view the
macroscopic climate system. The output of these RS devices can be studied with a
variety of optical techniques, in most cases altered via some logic to provide a more
value-added product depending on the data consumer’s needs.

For example, consider the delineation of processing levels provided in the peer-
reviewed document coinciding with the deployment of the ECOSTRESS instrument
([6]). A lower value processing level (L0, L1) indicates raw measurements of electro-
magnetic radiation from the Sun through Earth’s atmosphere off the land / water sur-
face, back up to through the atmosphere to the satellite instrument. In turn, a higher
value (L2 — L4) indicates the generation of physical parameters, gridding of swath
data, and data assimilation with other parameters. In the instance of ECOSTRESS,
the higher levels refer to land surface temperature, emissivity, measures of evapotran-
spiration, and at Level 4 evaporative stress and water use indices.

Here we investigate the temperature of the ocean’s surface (SST). This target is
chosen because of its focus on the behavior of water in the environment, its importance
in numerical weather and climate forecasting, and detectability via satellite-mounted
RS instrumentation. Also, it has matched continuous ground truth temporospatial
measurements that can be investigated for intercomparison of dataset bias, variances,
and uncertainties. While it is not practical to grid the entire surface of Earth with
sensors, in many situations and places it is extremely valuable to use arrays of dense,
spatially linked precise in situ measurements. Satellite observations have a coarse res-
olution and can miss many interesting small-scale anomalies within the hydrosphere.

We compare the raw satellite observations to the lower resolution but more precise
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measurements of sea surface temperature. We apply a treatment to the lower reso-
lution but generally more available satellite instrument (AMSR-E), setting its target
output to be the higher resolution MODIS product. Our hypothesis is that fusing the
AMSR-E data to MODIS data will create a product that is closer in performance to

MODIS than its AMSR-E input.

2.3 DMaterials & Methods

2.3.1 Sea Surface Temperature (SST)

The origin of SST as a continuously monitored variable began when Benjamin
Franklin captured measurements of the ocean as he traversed the Atlantic, acquiring
data and synthesizing these observations into information about the Gulf Stream.
There is a rich history from that point forward to the present day, and a thorough
review available in the literature ([16]).

SST is largely academically segregated into the field of physical oceanography.
Nevertheless, the connection between ocean, atmosphere, and land are intimately
intertwined. There is a trickling down from global SST anomalies like the El-Nino
Southern Oscillation, the Madden Julian Oscillation, the Atlantic meridional over-
turning circulation, western boundary currents, gyres, and eddies to the availability
of food, energy, and clean drinking water. Consequently, better understanding and
application of oceanic parameters in consideration of land-based hydrology means

improved forecasting and preparation for the future.

2.3.2 Aqua

The Aqua satellite was launched on May 4, 2002 ([19]). Upon it, two instruments
sit: AMSR-E and MODIS. Both, among other things, are designed to study the
temperature of the ocean. The measurements obtained as the satellite is moving

from South Pole towards North always crosses the equator at approximately 1:30 PM
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local time nadir (directly below the satellite). In the downward portion of the orbit,

the satellite crosses the equator at 1:30 AM local time nadir.

2.3.3 AMSR-E

AMSR-E is a passive microwave radiometer ([13]). The acronym stands for Ad-
vanced Microwave Scanning Radiometer for Earth Observing System. There are
several products produced on top of the raw radiance data collected by this instru-
ment, and the AMSR-E data is processed by different ground stations depending on
the parameter of interest. The produced datasets contain latitude, longitude, sev-
eral physical parameters (e.g., SST, Albedo, soil moisture) as well as other pertinent
metadata. As it pertains to sea surface temperature, AMSR-E is available in Level 2
or Level 3 products, and as part of Level 4 assimilation system output.

To detail a sample, one single Level 2 netCDF (.nc) file containing AMSR-E data
was downloaded. The record selected is that of March 3rd, 2004, with a UTC time
of 01:07:01. The file contains three coordinates (latitude, longitude, and time) and
thirteen data variables.

Each variable is a single matrix comprised of columns and rows of measurements.
The important distinction here is that the data structure is stored to reflect the path
of the orbit. See Figure 2.1. When the sea surface temperature is plotted as it sits
in the matrix, it is difficult to discern what is transpiring. There appears to be some
curvature of the measurements, but other than that little is known to an untrained
eye beyond the title and colormap.

Inclusion of the latitude and longitude coordinates, as well as a global basemap
generates a clearer picture as seen in Figure 2.2. A single Level 2 AMSR-E SST file
contains matrices representing one full orbit around the globe. Each file holds par-
tially daytime and partially nighttime observations. Because of diurnal warming, it

is desirable to separate the nighttime and daytime passes. Furthermore, many anal-
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yses are comprised of an ensemble of satellite observations from different platforms
such as this one. A grid makes for more orderly computations at large spatial scales.
Certainly, one could elect to grid every observation to the AMSR-E or MODIS native
product coordinate system. With our experiments, we choose the path of rectangular
gridding. We consider the Level 3 product because of the interest in spatial relation-
ship across large geographic scales and variable time (daily, weekly, seasonally, yearly,
generationally).

The Level 3 equidistant rectangular gridded product is accessed via the NASA Jet
Propulsion Laboratory’s Physical Oceanography Distributed Active Archive Center
(PODAAC) and was produced by Remote Sensing Systems of Santa Rosa, California.
This product comes in 25 km resolution and is delineated by daytime and nighttime
passes of the satellite. The time series runs from June of 2002 until October of 2011
when the AMSR-E instrument ceased functioning. Figure 2.3 illustrates the point that
even without explicitly defining the coordinate system in the visualization, the matrix
of SST values is already placed in proper spatial order. Figure 2.4 reinforces the fact
that little change occurs with the inclusion of latitude and longitude coordinates when
plotted on a rectangular grid.

We accumulate the daily daytime and nighttime readings from AMSR-E into
monthly products. While a monthly product has already been produced for use with
the Climate Model Intercomparison Project, AMSR-E_CMIP5 as available from the
does not delineate between daytime and nighttime. Here, we simply compute the

monthly average for daytime and nighttime passes on a pixel-wise basis for each

month. We finally re-grid the AMSR-E data to the MODIS L3 grid.

2.3.4 MODIS

MODIS, or Moderate Resolution Imaging Spectroradiometer, measures thirty-six

different radiance bands in the infrared and visible ranges of the electromagnetic spec-
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trum ([5]). Level 3 sea surface skin temperature as obtained from MODIS comes in
4 kilometer and 9 km products, and is derived from a subset of the thirty-six radi-
ance bands. The products are available in daily, average of eight days, and monthly
products. They are also delineated by daytime and nighttime passes of the Aqua’s
polar-orbiting nature. SST products deriving from MODIS are further specified by
the length of the waves within the thermal infrared range used to derive the measure-
ment: longer waves (11-12 microns) and middling waves (3-4 microns). The MODIS
documentation state that the 3—4 micron wave SST product is less uncertain, but only
usable at night because of the daytime sun glint impact on 3-4 micron waves. We
use the long wave 11-12 micron infrared measurements to keep constant the source
of both daytime and nighttime passes.

The MODIS Aqua Level 3 SST Thermal IR Monthly 4km V2019.0 product comes
with latitude and longitude coordinates, SST values and per pixel quality measure-
ments denoting when contamination is likely. The grid is equidistant rectangular, a
match with the AMSR-E grid but at a finer original resolution. Of the over thirty
million pixels for an entire day of 4 km MODIS pixels, 90% of them in the random
sample selected here are deemed contaminated and filtered out (Figure 2.5). This con-
trasts with the 50% loss of AMSR-E pixels. This great loss in pixels due to quality
is attributed to cloud contamination. To compensate, we use the monthly product
(Figure 2.6) where a greater amount of time has transpired, allowing for a higher
probability of clean global coverage. A randomly sampled MODIS monthly image
yields 50% loss, in line with the AMSR-E daily product and much improved upon

relative to the daily MODIS observation files.

2.3.5 Ground Truth Measurements

For a source of ground truth data, we selected the “In Situ Analysis System”

(ISAS) dataset obtained from the University of California’s Argo repository and pro-
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duced by a consortium of French institutions ([8]). An important constraint for this
work was to obtain only the surface level measurement of temperature at the highest
frequency available during the years of both AMSR-E and MODIS. These products
are provided in a gridded format are used to observe temperature measurements at
many depth levels. In the publication attached to the ISAS dataset ([8]), the target
physical quantity is steric height and ocean heat content; with these as their target
output, gridded depth-dependent temperature is stored as a byproduct. The 0.5 de-
gree monthly dataset is presented in a Mercator projection, slightly different than the
AMSR-E and MODIS grids. Mercator lines of longitude have a uniform distance in
between them; the distance between latitudes from the equator changes. Identical to

AMSR-E, we re-grid this data to the MODIS grid and coordinate system.

2.3.6 Treatment

The treatments we apply to the data are several configurations of one common
concept: neural networks. Neural networks are not new, but the growth of graph-
ical processing units (hardware) has enabled them to flourish in software. Neural
networks are a type of learned representation. A structure is fed connected input
and target pairs. Based on the predictive quality of the initial network structure, an
error between the neural network output and the target occurs. This error is in turn
fed to an optimization algorithm that iteratively and slightly alters each “neuron” of
the initial network structure until it reaches a designated optimal state. Via many
small calculations and the simultaneous application of statistical mechanics, neural
networks are known to provide qualities like that of a brain, such as capturing spa-
tial eccentricities and temporal changes in sets of related images. Neural networks
are applied to a range of tasks from the more mundane such as learning a quadratic
equation, to the more cutting edge, like extreme event forecasting or cancer detection.

Transfer learning has become commonplace in the field of machine learning ([24]).

37



Transfer learning places an emphasis on creating reusable treatment structures for
others to build on top of without inadvertently causing the audience to get lost in
possibly unimportant details. We employ transfer learning to create a complex config-
uration with a relatively short learning curve. The neural network is characteristically
deep, convolutional, residual, and regressive. Our construct is inspired by the work
of residual networks ([10]). However, our problem is one of a regressive nature. Sea
surface temperature has a continuous temperature range that it exists within. This
is a notable difference to some of the more common introductory neural network ex-
amples, such as those associated with the MNIST and CIFAR datasets where the
number of possible outputs is very small ([25]; [15]). Loss functions associated with
regressive problems are constrained to just a couple: mean absolute error (MAE) and
mean squared error (MSE). The calculation of the loss function must be differen-
tiable. This is due to the optimization component of neural networks. The literature
is rich with publications regarding neural network optimizers, as well as the general
mechanics of neural nets ([1]; [14]).

Once neural network architecture and hyperparameters are chosen, training and
validation data is loaded into the network. While training the neural network, close
observation is made of the reduction in error between training input and output as the
neural network begins to optimize or learn. We also monitor the validation dataset at
each training iteration. The learning process stops once the training and validation
data has been passed through the network a certain number of times, or epochs.
When prototyping or pilot-testing the experiment set to be carried out, one should
test with a very short number of epochs and a larger sum of epochs to see where good
performance meets fast time of computation.

After training, the optimized neural network structure is intentionally frozen. Be-
fore the point of freezing, the neurons of the network can be adjusted for optimization,

like a student asking a teacher for advice when studying. The frozen state and infer-
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ence imposed upon it is like a student being prompted with a pop quiz and no teacher
assistance. This test or input data are similar enough to the training that the teacher
believes the student will have success in passing the test according to the selected
merit (mean squared error, the loss function). After the test, the performance of the
model is evaluated and a decision is made regarding next logical steps in the research.

A neural network can become biased to its training inputs. It starts to memo-
rize the training dataset, which does not make for a generally applicable algorithm.
Avoidance of biasing comes at the cost of variance ([9]). Applying dropout is one
technique to systematically prevent system bias by simply “turning off” a certain
percentage of random neurons at each iteration of the algorithm ([11]; [22]). Another
approach is the application of early stopping. The loss function of a neural network
typically looks like a very steep curve down to a flat bottom. Rather than allow the
network to persist in the flat bottom for long and become overfit, simple logic can be
employed to stop training early when the network shows evidence that it has reached
an optimal state. Percentage of data split between training and testing proportions is
another relevant training hyperparameter. A larger proportion of the dataset being
part of the training portion could lead to overfitting of the model and lack of gener-
alized predictability. On the other hand, insufficient training data might lead to an
inability to adequately characterize the reality of the data pairs.

The image sets subjected to treatment are on the large side computationally.
Holding many one million or nine million pixel images within the memory of a sin-
gle graphical processing unit becomes intolerable to the device. One could elect to
use multiple GPUs or a compute node with a great provision of memory. Here, we
constrain the experiment to a single GPU and cut the images up into smaller pieces
of square data. Our patch size is fixed at 100 x 100, though this is a tunable hy-
perparameter. Figure 2.7 shows a Pacific Ocean study region, highlighting Hawaii

and regions east. While this image is too large to process directly in the neural net-
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work, we can solve this problem by creating the eighteen patches of 100 x 100 pixels,
representing the 300 x 600 pixel region under observation.

Neural networks do not function when nan values are present in any of the images.
We enacted a broad treatment to the AMSR-E and MODIS images, computing the
mean of the entire image, excluding the nan values. Then, where the nan values are
present, we replace them with the mean value. This has the convenient byproduct of
introducing into the neural network many training pairs where the input and output
are simply comprised of the average global SST value as obtained via the AMSR-E

and MODIS instrument.

2.4 Results

We prepared the SST data for nine different cases all studying the year 2010: the
Atlantic, Pacific, and Indian Oceans segmented by monthly Day, Night, and Hybrid
(nb, hybrid means day and night images averaged together) observations of SST (nb,
first letters of the previous are bolded to call attention for their use in Figure 2.8).
We train the neural network on the first ten months of the year, validate with the
eleventh month, and test with the twelfth month. A training session runs for 100
epochs. Each image in the geographically constrained time series is 300 pixels x 600
pixels in size, divided up into eighteen 100 x 100 pixel segments to incrementally feed
the neural net.

In all instances, both training and validation loss functions drop by several orders,
indicating successful training without overparameterization as would be indicated by
low training error but high validation error. Performance of network as it relates to
the test data, December 2010, is seen in the upper plot of Figure 2.8. The goal is
for measurements labeled Pred or Optim to bring the RMSE value between AMSR-E
and Argo or MODIS down. Pred is the prediction directly from the neural network.

The Optim case takes the Pred and performs a band pass on the signal. If there are
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any measurements outside three standard deviations of the mean, they are replaced
with nan values instead. This is a device meant to combat some of the challenges
with coastal artifact.

In every case, the RMSE between the optim and MODIS is higher than the AMSR-
E input. In some instances, the test case of December does make an optim output
that is closer to Argo than the input AMSR-E. In some cases, though, it makes a
worse performing product with regards to Argo than either AMSR-E or MODIS. A
bright spot is that the optim output is closer to MODIS than the Argo product. See
Figures 2.9 and 2.10 for samples of how the RMSE translates to actual transformation

of the images.

2.5 Discussion

While the continual development of a relatively open extract, transform, and
load ([2]) system along with creation of the actual destination for the loaded data
(namely the neural network treatment and posttest analytics) is certainly a plus,
the results of this study request future engagement. In every case of this study, the
neural network appears to struggle with coastal regions. This is due to the nature of
the land sea boundary layer in all these datasets. At the presence of land, the raw
data (as they are downloaded as .nc files) are given a non-number (nan) designation.
Neural networks weren’t designed optimally for the currently produced segregated RS
datasets. The datasets appear to be manufactured with the understanding that one
group of people are still more interested in ocean behaviors, another land behavior.
For the purpose of training a neural network using the convolutional flavor, images
with no nans are needed. As referenced earlier, steps were taken during the training
process to circumvent the presence of land by substituting those pixels temporarily
with the local mean value. Another option is the application of the substitution of

the nan values with the mean as computed by the entire “scene” or day. There is the
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potential and a likelihood that the substitution of these values is introducing a source
of structured noise. This noise might be leading to the higher than preferable test
performance as denoted in Figure 2.8. Furthermore, it is probable that this structured
noise is hindering training of the neural network process itself.

As it relates to computer vision tasks such as this set of experiments, the use of
mean squared error as a loss function has been called into question as an appropriate
target ([23]). Their results certainly warrant some concern, and our experiments
have some corroboration with their findings. Our images are single channel inputs
and can be considered grayscale pictures. When displaying SST images, we use a
colormap based on what we know to be the physical limits of the parameter itself.
This is a different approach than typical of image based machine learning techniques.
Alternate loss functions to the standards baked into PyTorch are available ([12]).
These functions require the inputs to be either between 0 and 1 (grayscale) or 0 and
255 (color images). Another avenue is the pursuit of physics-based loss functions
([20]). While neural networks are a useful tool, they alone are not a silver bullet,
especially as it relates to geophysics. However, the neural network community has a
keen interest in computational efficiency.

We applied a land mask generated from the MODIS instrument. Aqua has far
surpassed its projected useful life span and was designed before the new millennium.
The new Surface Water Ocean Topography (SWOT) mission launched in 2023 ([7];
[17]). It will bring many new insights to the hydrology community. Among those
insights are a more precise global picture of Earth’s coastal regions.

Only a fraction of the available data was observed in this study. The ISAS Argo
dataset was a single file attached to a DOI address of over fifty gigabytes. We ex-
tracted simple the surface layer of this dataset. There is great value in consideration
of SST depth layers. Furthermore, we studied monthly time series images of all three

raw datasets. AMSR-E and MODIS each have near complete global pictures within
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two to three days. These datasets are then transformed in different ways and can
lose fidelity by various types of decimation such as regridding from swaths to squares,
uncertainty in formulas used for conversion from base input to high level (L2 - L4)
physical parameter, or by forms of compression.

Cloud cover is a persistent factor at play within the community. The question of
“is the measurement (pixel) currently observed impacted in an undetectable way?”
can’t fully go away, because even at the hyperlocal “nowcasting” time scale there
is missed detection of events. Because of the pervasive challenges, people need to
come together. Great global solutions require more cooperation, engagement, and
the act of building bridges with one another. Missions like the International Space
Station, Artemis, Landsat, and GRACE, and SWOT are only examples of what
global cooperation can result in. Here at the microscopic level of single parameter
consideration, we need more of the same type of teamwork. Dynamic collaboration
amongst many stakeholders raises economic efficiencies. Improvement of just a single
ECYV requires takes the participation of a deep supply chain. Water is life. It connects
the global ecosystem in nearly every facet, from food supplies, health of exotic wild
animals, to the manufacturing of semiconductor chips and the treatment of industrial
water. A clearer perspective is always welcomed to help sustain life. The missions of

Aqua and Argo certainly achieved their planned missions in that way.

2.6 Conclusion

Sea surface temperature is an essential climate variable and crucial to understand
the movement of water throughout the hydrosphere. The beginning of the 21st cen-
tury marked a new frontier in the measurement of SST via the Aqua mission and Argo
program. We observed three overlapping datasets focused on measurements of sea
surface temperature: AMSR-E microwave measurements, MODIS infrared measure-

ments, and I[ISAS Argo float in situ measurements. We focus the study on three large
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oceanic regions: Indian, Pacific, and Atlantic. We used Flux to Flow, an extract,
transform, load, treat, and evaluation framework based around a deep convolutional
residual regressive neural network. We attempt to transform the coarser resolution
satellite product towards the finer one and intercompare all datasets. While the neu-
ral network performs well according to its typical loss functions, we find that the
presence of frequent nan values, the limitations of mean squared error as a loss func-
tion used in computer vision tasks, and the sheer size of output target quantities
compounded with high desired precision results in limited success when applying the
neural network transformation. However, we believe that a greater quantity of re-
sources focused on a smaller area per resource with this architecture might allow for
better capture of the relationship between AMSR-E and MODIS. More generally, we
see the future of this framework including other treatment algorithms, experiments
where fewer output target values are considered, or computing resources run in tan-
dem to build a bigger network for a potential better grasp on the transformation

process.
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2.7

2.8

Code Availability

Scripts are available at https://github.com/albertlarson/f2f _sst
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2.9 Appendix

Figure 2.1: L2 AMSR-E SST field, March 3, 2004, no coordinate system
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Figure 2.3: L3 AMSR-E file plotted without supplied coordinate system
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Figure 2.4: L3 AMSR-E file plotted with available coordinates and world map
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Figure 2.5: L3 daily MODIS file containing only high quality flagged pixels
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Figure 2.6: Monthly L3 MODIS image containing only high quality observations
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Figure 2.7: Sample training monthly observation; January 2010 MODIS day obser-
vation of the Hawaiian Islands; segmented into 100 x 100 pixel regions.
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Figure 2.8: December 2010. The top panel shows the distances from Argo and MODIS
to predicted, optimized prediction, AMSR-E and each other for all nine experiments.
Two bottom panels are plots of training and validation losses during neural network

training.
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Figure 2.9: Relatively “good” perceptual change, Pacific Night case
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Figure 2.10: Relatively “poor” perceptual change Indian Day case
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3.1 Abstract

Water continuously cycles throughout the land, ocean, and atmosphere. Ac-
cordingly, it is important for hydrological analyses to consider water as it moves
throughout the entire hydrosphere, and not just a single facet of the process. We
use neural networks as a device to transform geospatial observations of water quan-
tity and quality into forecasts of ground truth streamflow measurements. Two very
large transboundary basins, the Columbia River and Yukon River, are subjects of
this investigation. We first describe the basins. Then we create two datasets for each
basin: one with coupled surface flow, subsurface flow, and sea surface temperature of
the basin adjacent oceans; and another with simply the surface and subsurface flow
land measurements constrained to the definitive boundaries of the delineated water-
shed. Finally, we load these datasets into Flux to Flow (F2F), our neural network
test platform. Our results indicate that, even with the smallest neural network we
try (four neurons only), use of sea surface temperature greatly improves forecasting
of monthly streamflow from up to two years lag between the input images and the
output gauged streamflow measurements. We see the future use of the F2F pattern
having more output targets and likely requiring multiple compute nodes to scale the
work. We discuss and identify drought monitoring as a suitable next step. We believe
this work has only scratched the surface regarding the integration of land and ocean

parameter datasets to fields devoid of non-numerical observations.

3.2 Keywords

water, water quantity, streamflow, sea surface temperature, GLDAS, MODIS,

Columbia River, Yukon River, z-score, Nash Sutcliffe efficiency, neural networks
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3.3 Introduction

Depending on the location, there are different water related signals that humans
can witness and measure. These time variant water signals include but are not limited
to parameters such as rainfall, snowfall, cloud cover, fog, ice, soil moisture, streamflow,
river height, body of water temperature (lakes, seas, ponds, oceans), tidal timing and
intensity, waterbody color, turbidity, and trace chemical concentrations in the water.
These variables are commonly cloistered into variables of the land, variables of the
atmosphere, and finally but certainly not least important variables of the ocean.
Together they form the hydrosphere. We focus on variables of the land and variables
of the ocean; however, we affirm the impact of the atmosphere upon land and ocean.
Even at long time scales, there are certain parts of the globe that are constantly
obscured from viewing with traditional bands of the electromagnetic spectrum due to
noise such as clouds, wind, or other interference. This fact places an emphasis on the
need for continuation of innovation in satellite measurements, ground sensors, and
the spectrum of devices in between. The state of the science is still in many instances
‘flying blind’; Earth’s environment is dynamic and complex and modern solutions
need to grow to combat modern problems.

We consider two extra-large basins. As an added complexity, we target trans-
boundary watersheds. The motivation behind the use of transboundary watersheds
is to simulate differences or nuance when leaving the gates of our national data sys-
tems in the acquisition of gauged river discharge measurements. In this instance,
our journey is a short one to the northern riparian of the United States: Canada.
Our view considers seventeen years of data, spanning years at monthly snapshots as
opposed to the shorter end of the time spectrum (seconds, minutes, hours, days, or
weeks). The two basins selected herein (Yukon River, Columbia River) are unique
because of, among other features, their: 1, far from equatorial latitude; 2, proximity

to the integration of land and ocean; 3, great range in quantity of water infrastructure
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between the two habitats; 4, large range of elevation change.

We study surface and subsurface flow as computed for one of the GLDAS datasets.
Additionally, we couple the two GLDAS datasets to MODIS sea surface temperature,
creating a global dataset mostly devoid of non-number pixels. Of interest is the pre-
dictability of several gauges at a time when using the clipped version of GLDAS versus
our custom ocean-enabled version of GLDAS. Furthermore, we modulate the lever of
z-scored datasets versus non-z-scored datasets. We find that combining surface flow
with subsurface flow (derived measurements of the changing weight of water in a re-
gion) and sea surface temperature has a markedly improved performance in predicting
gauged streamflow than the datasets containing only surface and subsurface flow.

The wide lens guiding motivation behind this study is three-fold: 1, to improve
the reader’s understanding and capability to ‘quickly’ visualize the pertinent available
macroscopic modern water cycle monitoring data sets; 2, to highlight state of the
science level data typically used by experts for the generation and interpretation
of global policy targeted outputs; and 3, to present a narrative of water (hydrology,
limnology, oceanography) as the focal point of study because of its status as a primary

building block of life.

3.4 Materials & Methods

3.4.1 Yukon River Watershed

The Yukon River and greater watershed are situated within part of the state
of Alaska, and the eponymously named Canadian territory known simply as Yukon
(Figure 3.1). A thorough baseline hydrological artefact of the Yukon River exists ([6]).
The headwaters of the Yukon River emerge from the constellation of finger style lakes
(e.g., Atlin Lake, Marsh Lake, Teslin Lake, Gladys Lake) known customarily as the
Southern Lakes region along the northwestern border of the Canadian province of

British Columbia. Sampled along the route of the river, one is likely to find bedrock,
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confined and unconfined aquifers, a host of unique soil profiles, vegetation, permafrost,
and a not to be understated flurry of flora and fauna friendly to subarctic climatology.
At a microscopic, chemical level, the frequent boreal forest attributes concurrent with
the frigid temperatures are well understood ([40]). Zooming out to a wider view than
just the Yukon, evidence continuously mounts regarding the impacts of the changing
climate. As goes the rest of the world, the Yukon feels an impulse. Nitrogen and
phosphorous pollution are two of the more notorious organic chemical components
that when unmanaged can wreak havoc on a watershed, causing eutrophication, loss
of biodiversity ([7]). It’s a short walk down the primrose path to a river lacking in a
once endemic species of fish ([27]).

The Yukon River is famous for its salmon. In the last several years, the Yukon
has come under public scrutiny for declining populations of chinook and chum in the
Yukon and its neighbor river the Kuskokwim. A combination of bycatch in pollack
fisheries, overfishing, marine heatwaves and algae blooms are causing the environment
to become potentially less suitable for fish. There are prevalent modern terrors such as
“forever chemicals” and the ubiquity of microplastics in the hydrosphere to the degree
that many careers are being dedicated to the study as it relates to contamination of
our waterways ([45]). It is a wonder at all sometimes that our river ways can sustain
any life given the way some humans steward the gift. Humanity has much work to
do to repair and improve the current status quo.

Environmental flows, or “e-flows” is “the quantity, timing, and quality of water
flows required to sustain freshwater and estuarine ecosystems and the human liveli-
hoods and wellbeing that depend on these ecosystems” ([3]). Considering a perspec-
tive filtered through the comprehension of e-flows, the Yukon has natural advantages.
It is in a higher latitude, close to the North Pole (there’s a town called North Pole
in Alaska along the Yukon). Because of the high latitudes, constantly cold (equatori-

ally relative) temperatures, and sometimes very long dark periods of time, there’s a
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tendency for life forms to shirk away from this environment. As such, the river is less
prone to farming, heavy nutrient loading, or industry strain. That is not to say that
its observation is in vain or without merit, far from it. Large swaths of previously
unoccupied or lightly occupied land are important ones to observe with greater clarity
the forcings and results of the natural global Earth phenomena as it is subjected to
human intervention.

Physically, the Yukon River and surrounding land has all the features one desires
in a naturally occurring surface water: beautiful lakes, high mountain scenery, sin-
uous meanders, novel woodland creatures. For example, erosion drives the creation
of oxbow lakes, small slices of river cut off after anomalous water patterns drive un-
usual erosion in a suitable soil substrate. The Yukon is home to many cyclically
migrating birds, as well as a habitat for many bears ([35]). Bears are attracted to the
Yukon’s most notorious creatures: the chinook and chum populations traversing the

watercourse.

3.4.2 Columbia River Watershed

South of the Yukon Basin, at the southern edge of British Columbia and the
boundary between the contiguous US and Canada lies the beginning of the Columbia
River (Figure 3.1). The watershed is split into two major parts by the Cascade
Mountain range running northerly from Oregon up into British Columbia. Land
wise, the basin is primarily east of the Cascades. The western half of the larger
Columbia drainage basin as divided by the Cascades finds a large share of water in
the flows of the Willamette River. The waters of the Willamette stem from Waldo
Lake, and it moves in a northerly direction before merging with the formal Columbia
River. The Willamette unfortunately came under great scrutiny for the exhaustion
of its goodwill to the point of receiving the designation of one of the United States

most polluted waterways ([34]). There are efforts to restore the waterway that have
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logged twenty-five active years and are beginning to restore these damaged arteries
and veins of water.

The Willamette meets the Columbia in Portland, Oregon, and there is a short
portion that flows north and west into the Pacific Ocean, catching a view of Mount
Saint Helens to the east as the Columbia traces the boundary between the states of
Oregon and Washington. Prior to Portland, the Columbia has a long meandering
path through Washington and the Canadian province of British Columbia. Moving
against the current, one follows the river in an easterly direction until coming upon the
Tri-Cities in Washington. Kennewick, Pasco, and Richland are the three towns at the
confluence of the Columbia and the other two of its other major tributaries (Snake
River and Yakima River). All proverbial roads of the Columbia move upwards in
elevation, and the coherence of a singular river eventually dissipates. Where Yakima
for example weaves back into the Cascade Range, there are many finger lakes serving
as the upper riparian.

Snake River is the largest tributary of the Columbia, its starting line in Wyoming
trekking a westward course just north of Bear River. The Snake River’s headwaters
are outflows of Yellowstone. The Columbia River and Snake River share a potentially
overlooked but crucial feature from their convergence backwards: a vector of hydraulic
projects along both of their paths, none more notable than the Grand Coulee Dam
(GCD). GCD is a hydroelectric power generating dam, with a power generating ca-
pacity of 6,809 megawatts (MW)). GCD is the largest power station (not just hydro,
but of any type) in the United States. Though, it is dwarfed in size to the Chinese
Three Gorges Dam, which boasts an installed capacity of 22,500 MW.

The eponymous Columbia ultimately has its headwaters in British Columbia
where it forms from a series of three finger lakes: the smaller Slocan Lake and the
protracted-in-length Upper Arrow Lake and Kootenay Lake. The three direct sup-

pliers of water are amongst the Columbia Range of mountains. Furthering the point,
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there is also a Mount Columbia in the range.

3.4.3 Data Sources

This study compiles together several large portions of data from five different
institutions. NASA provides the two land variables, surface and subsurface flow.
These variables are derived by integrating several meteorological forcings into the
Noah water balance algorithm. The Noah land surface model has a rich history
dating back to the late 1980s with formal named implementations released in the
middle 1990s ([11]). Surface and subsurface flow are produced measurements of unit
kilograms per square meter and represent the spatial weight of water at a given time in
each location ([52]). Noah factors known soil properties, solar radiation, precipitation,
wind, pressure, humidity, and changes in the purses of snowpack (if applicable to the
region).

The sea surface temperature product used is one of the monthly outputs from the
MODIS instrument on the Aqua satellite. In this instance, the thermal longer wave
infrared band observed by MODIS is selected ([37]). Furthermore, we use the data
product that only looks at nighttime passes of the MODIS sensor. Daytime passes
captured are ignored because of the potential diurnal warming effect that manifest
in daytime observations. The skin of the ocean can become surficially inflated. Our
preference is to a measurement of the ocean closer to the signature of the depths
of the waters rather than the strength of the sun on a given day. Solar radiation
is already encompassed in the calculation of land flows, so we attempt to limit its
impact.

Gauged streamflow for both basins are obtained through the United States Geo-
logical Survey and Canada’s bureau of climate and the environment ([47]; [10]). In
all instances, we constrained ourselves to near continuous basin measurements over

the entirety of the time series. The requirement of continuity (no non-number pixels
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and preferably no interpolation between months) plays a part in the quantity of mea-
surements per basin. The study length is 210 single month measurements, beginning
with July 2002 (coinciding with the first available monthly measurement of MODIS)
and ending with December 2019. Measurements of actual streamflow in cubic feet

per second for each basin are provided in the Figure 3.2.

3.4.4 Preprocessing

We run two distinct workflows across the time series for the Columbia and the
Yukon basin. Motivated by a desire to understand whether the coupling of monthly
SST to the GLDAS measurements of water flux across land impacts the speed and
ability of the neural networks to learn algorithms connecting the inputs and outputs
(i/0), we create datasets that are comprised just of surface and subsurface flow, and
those that combine time aligned SST with the surface and subsurface flow measure-
ments.

The process of combining land and surface measurements is illustrated in Figure
3.3. In the top row, we have one measurement of surface (Qs) and subsurface (Qsb)
flow. In the second row first column, we have added those two measurements together
pixelwise. In the second column, second row, the combined Qs and Qsb are integrated
with the corresponding monthly measurement of SST. In row two column two, having
the single colormap representing all numbers provided causes a “washed out” effect
where the Qs and Qsb measurements disappear because their physical range here are
roughly between 0.0 and 1.0 kilograms per meter squared, as opposed to the wider
0.0 to 20.0°C range. Concurrently, row three captures the dynamic ranges of water
flux over land, and the temperature of the ocean’s surface temperature.

In their respective raw formats, the land and ocean variables have different reso-
lutions and different grids for each pixel of data. This fact makes assimilation of the

data in its raw state impossible. The fix for this problem is bilinear regridding. We
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retain the MODIS grid and resolution of approximately 9 km x 9 km per pixel. To
facilitate regridding, we utilize xESMF, a high level python package hooked into the
Fortran, C, and C++ based Earth System Modeling Framework ([55]). We input the
source image (Qs and Qsb), the destination grid (SST), and the type of regridding
(bilinear). The algorithm provides as an output our source image in the destination
grid.

We also use a windowing technique to eliminate nan values from the MODIS SST
images. The PyTorch software suite has the function to create tiles of uniform smaller
images from a large input ([42]). We unfold each MODIS raster into smaller non-
overlapping squares. Within each tile, we set the software to find any non-number
values and replace them with the average of the available numerical values in the tile.
One could simply take the mean of the entire global image and replace non-number
values that way; however, this is prone to the creation of unusual bias due to the wide
variance of sea surface temperature based on location of observation. By using this
tile method, we limit potential bias through the consideration of pixels only that are
in relative proximity to each other. After gap filling, we fold the tiles back up into
the original image size.

Our control preprocessing in the study follows the same chain found in the first
iteration of Flux to Flow. We clip the measurements of Qs and Qsb to the geographical
constraints captured in the publicly available shapefiles for each basin. To do this,
we involve a few different publicly available software packages. We open the shapefile
(a digital vector storage format) with GeoPandas ([26]), convert the vector file to
a GeoJSON file with shapely, and clip each measurement of surface and subsurface
flow with rasterio ([18]) and xarray (]23]). As opposed to the coupled land and ocean
images, we do not add the measurements of surface and subsurface flow together. We

fill any non-number values with the mean of the available measurements.
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3.4.5 Treatments

To investigate the capabilities and limitations of neural networks as they pertain
to the calibration and prediction of streamflow from land and surface measurements
of water, we run 1,920 experiments total, 960 for each basin. The 960 experiments
are spread amongst five neural network configurations of increasing complexity. Of
the 192 configurations per neural net, we run experiments splitting the datasets into
training data and test data splits of 70% / 30%, 80% / 20%, 90% / 10%, and 95%
/ 5%. The more data that is in the training set, the higher likelihood of better
performance in the testing regime. We have six different lag profiles (zero lag, one
month lag, three month or “one season” lag, six month or “two season” lag, one
year lag, and two years lag). We test between z-scoring and not z-scoring the input
channels. Lastly, we have an option whether to shuffle or not shuffle the training
data. Shuffling data is known empirically to improve statistical learning ([33]).

Four of five neural networks have a single hidden layer. Single hidden layer neural
networks, with enough neurons in the hidden layer, are theorized to be capable of
universal function approximation ([22]). Concurrently, we evaluate the feasibility of
using a single hidden layer of differing sizes (4 neurons, 30 neurons, 200 neurons, and
1,000 neurons) to approximate the transformation algorithm between location spe-
cific water flux to flow measurements. To facilitate these networks, we reshape each
input raster of shape height times width into a vector of one by (height times width).
The vector passes through the hidden layer, receives signal conditioning via rectified
linear units (ReLU), and outputs six or seven (based on the basin under observa-
tion) predictions for each of the streamflow gauges. Based on the difference between
the predictions of streamflow output by the model and the actual measurements of
streamflow according to the mean squared error loss function, backpropagation and
adjustments of the neurons of the network are made using the Adam optimizer ([30]).

Regardless of the neural network architecture, the learning process (forward propaga-
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tion, the calculation of loss, backpropagation and updating of weights) is performed
100 times (otherwise known as 100 epochs) across the training dataset. Model testing
simply makes a single pass through the unseen testing data (the most recent in time
data, quantity dictated by the lag of the test case and the percentage of data devoted
to testing).

The fifth and most complex network is a convolutional structure loosely based on a
modern image classification architecture ([20]). Each of our input channels are forced
into a convolutional space (sometimes referred to as the latent space) where the input
images are considered in many dimensions by the machine. This function allows for
automatic feature learning by the machine of potentially important structural details
or patterns unique to the SST fields. To hedge against the potential for the machine
to miss the mark, this latent space learning is containerized, added to the input that
was used to feed latent space learning, and then fed into a conventional neural network
structure that bottlenecks down the input images to 100 neurons, fifty neurons, twenty
neurons, ten neurons, and finally the output size of either six or seven neurons. In
contrast to the image classification network, our structure has a regressive target
output. A regressive target output simply imputes that the value of streamflow can

be any continuous value (within reason) greater than zero.

3.5 Results & Discussion

The 1,920 experiments were split into their respective basins, the Columbia and
Yukon. Each set of 960 experiments ran on their own node comprised of at least one
NVIDIA GeForce RTX 2080 Ti GPU and 64 GB of CPU RAM. Due to its slightly
larger per image pixel size (200 x 800 for the SST enabled, 38 x 143 for Qs and
Qsb only), the Yukon test set ran for approximately twenty eight hours while the
Columbia basin (200 x 600 for SST enabled, 46 x 57 for Qs and Qsb only) tests lasted

only 21.5 hours.
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In developing the test set of experiments, we again encountered the implications
of the “washed out” effect as seen in the preprocessing portion of this document.
Upon feeding the single channel hybrid ocean temperature and land flux images into a
standard z-score treatment of our network, we found that regardless of the complexity
of the network and with no lag of the data, performance was very poor. A z-score
is computed by mean centering the data under observation (0.0 = mean of the data)
and dividing by the standard deviation (z-scores between -1.0 and 1.0 are all of those
within one standard deviation away from the mean). The values of Qs and Qsb have
a relatively small range to that of SST. Therefore, the dynamics of the s and Qsb
were overshadowed by the larger range of measured SST values. One can’t simply
mix two physical parameters and then compute a z-score. They have two different
dynamic ranges. Dynamic range is the general placement of a collection of values
on the number scale, as well as and possibly more importantly the distance between
their largest and smallest observed value. Our fix consisted of going back to the
preprocessing step, computing the z-scores for SST and Qs + Qsb individually, and
then and only then merging them into a single time series image for each month.

In Figure 3.4 we present aggregate results of the testing data ran through their
respective trained models. Ignoring all the other parameters (lag, quantities of train-
ing and test data, use or abstention from the use of z-scoring, shuffled or non-shuffied
data), there is an evident distinction. The use of SST coupled with Qs and Qsb
changes the performance of neural network streamflow prediction. Nash Sutcliffe ef-
ficiency, or NSE, is a metric frequently used to evaluate hydrological modeling efforts
([38]). A negative or near zero value implies a poor model prediction, whereas a value
close to 1.0 indicates a strong penchant to accurately predict the actual streamflow.
Calculations of NSE herein only consider testing data, not training data. To be clear,
let’s consider an imaginary example of a different time scale. A time series of 100

days in a row split into an 80% / 20% train test split means that the model (here the
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neural network) learns an algorithm from the first eighty days and then makes infer-
ences about the latter twenty days. Factoring in the training data when computing
NSE would give NSE a positive boost, but it wouldn’t necessarily be considered fair
or unbiased. One can make a very large neural network that simply memorizes the
input data, which would give the impression of perfect performance. This is fine if
that was the desired task. As a baseline or “mic check” of your system, it is a rea-
sonable device; however, it would likely have little to no practical application beyond
getting the metrology for your experiment dialed in. Therefore, we only consider test
data.

In Figures 3.5 and 3.6, we disaggregate the results from Figure 3.4 into their re-
spective individual neural network configuration. In the instance of the Columbia,
for both non-SST and SST experiments, as the complexity of the neural network
increases, the performance of the network with regards to the unseen test data mea-
sured by NSE increases. With SST present, performance climbs faster. In column
three of Figure 3.5, the single hidden layer network comprised of 200 neurons, the
non-SST experiments have a centered NSE value around -1.0, whereas the SST ex-
periments caused a jump to a range between 0.35 and 0.90. The value of SST is
even more opaque in the Yukon experiments. In Figure 3.6, the data shows that
the simple change from four to thirty neurons combined with the SST-enabled data
gives results of model predictability well over 0.0. The non-SST datasets don’t see
this performance until derrnn (pronounced discern and the shorthand name for our
fine-tuned deep neural network) enters the proverbial training arena.

In Figures 3.7 and 3.8, we shed the non-SST experiments and smaller single hidden
layer configurations; instead, we just focus on experiments with SST and one of
two neural net architectures (derrnn or the 1,000 neuron single hidden layer neural
network). Specifically, we filter and plot two small datasets: 1, a disaggregation of the

remaining experiments per basin based on lag between input and output data; and 2,
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a disaggregation based on the Boolean variable of z-scored inputs versus non-z-scored
inputs.

Both figures indicate the same reality as in the original F2F document. Civil
infrastructure creates its own set of nuance and challenges to the modeling realm.
The Yukon River is a more continuously wild place. Handling the two different sets
of signal chains is like handling the sound profile of a strictly raw acoustic guitar
signal versus handling an electric guitar buried underneath a dozen different pedal
effects. Though the acoustic player has bends, twists, turns, and hopefully nuance
to their playing with time, there is a more finite (yet relatively natural) sonic realm
emoting from the acoustic player’s hands. The same might be said for the Yukon in
its current state, and there is a certain beauty about the natural movements of water
and sediment in an unconstrained basin such as the Yukon. It may experience times
of drought or flood, but there is not yet any fashioned mass of concrete capable of
holding back very high (relative to the baseflow of the river) quantities of the Yukon
waters for long periods of time, and consequentially the hydrograph has little artificial
complexity.

The same cannot be said for the Columbia River. Since greater control of
Columbia’s flows sit with single-point sources, and these are manmade devices, opti-
mized performance of F2F in a basin such as the Columbia River basin would benefit
from much more data at the inlet and outlet of each point source. A next step might
be just considering a single basin (or single State) and accumulating all available hy-
draulic data. The EPA has its Enforcement and Compliance History Online (ECHO)
data available as a representational state transfer (REST) software architecture. In
another run of the land data assimilation system (i.e., a hypothetical NLDAS 3 or
GLDAS 3), it would be of value to see the impacts of programmatically including
a few hundred or thousand continuous point-source or ground truth measurement

sources. Certainly, calibration of this many outputs would require either: 1, much
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compute time on a single graphics processing unit; or 2, and probably more likely,
the use of many GPUs in tandem.

Reference is made in the Materials & Methods to a preference of input images of
the ocean associated with the deeper depths of the waters rather than the strength
of the Sun on a given day. Our study certainly is self-limited in the depth field. The
ocean at places is very, very deep. Soil has geospatial delicacies; the vadose zone
is where science is witnessing the fallout from humanity’s continued mishandling
of chemicals. These facets beget their own studies, which is outside the scope of
this investigation. We acknowledge that although this study shows promising results
regarding the use of advanced neural network technology in the forecasting of monthly
streamflow out to a lag of two years, true temper of the devices will only come through
testing other datasets, time scales, and locations.

Another water-focused avenue we see F2F moving towards is drought propaga-
tion. Historically, humanity’s records of drought monitoring are very good, due in
part to various backwards looking methodologies. For example, a gridded, spatially
interpolated dataset observing the standardized precipitation index (SPI) dating back
to 1895 is available ([50]). The U.S. drought monitor time series dates to 2000 ([48]).
There is even one digital product measuring the Palmer modified drought index at a
0.5 / 5x5 (degree / square kilometers) resolution dating back to the beginning of the
common era, 0 CE, over 2000 years ago ([17]). Future work might take a backwards
looking glance through the lens of Flux to Flow. There is potential wisdom to be
gleaned from the assimilation of prior discharge information for the sake of better
initialization of prediction. This work can take advantage of the ability to break up
datasets into smaller pieces and load them onto concurrent graphical processing units.
Should one consider the cost and deem it a suitable operational tool, the simplifica-
tion within Flux to Flow in folding and unfolding of geospatial tensors will serve as

a potential balm to data handling challenges.
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Drought is intimately linked to water scarcity, and this topic has never been more
relevant. Water scarcity represents one of three things: 1 — the condition where
no drinking water infrastructure exists; 2 — the condition where the drinking water
infrastructure is inhumane; and 3 — the condition where available water resources are
used unsustainably over a long period of time. In the modern scientific community,
drought is science based, whereas water scarcity is rooted in policy, management,
and justice as it relates to the global state of water infrastructure ([49]). These
differences notwithstanding, drought and water scarcity are symbiotic in their nature.
The destruction of natural ecosystems catalyzes further drought conditions ([16]). As
the dynamics of the global climate change Earth’s structure at the air, land, and
oceanic interfaces, the occurrence and severity of drought conditions are becoming in
some cases greatly exacerbated ([29]; [39]). Therefore, it is necessary to understand
the propagation of drought in time as it starts in its most benign state, and how it
can take a turn for the worse and become an extreme event.

There are more than fifty different indices related to drought. The National
Drought Mitigation Center (NDMC) highlights five digitally, and six in the origi-
nal software system companion paper ([48]). In all of them, keeping everything else
equal, a decline in value equilibrates to a worsening drought condition. A simple
model given these eight channels of data could be constructed by averaging the out-
puts at a given location and time, followed by a whitening technique such as z-scoring
and segmentation of the result into bins yielding a single image representation. The
timescale of the ‘percent of normal’ statistic changes in response to certain drought
condition steps (e.g., from extreme to exceptional drought, the consideration of the
condition switches from degree of specialness over a six month period to specialness
over a twelve month period). Consideration of prior observations with thoughtful
control of influence decay of said observation over time falls under the umbrella of

drought propagation concerns. There are other open source software repositories
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that have already replicated many of the formal algorithms. One such algorithm of
note is the Penman-Monteith equation of reference evapotranspiration (ETo). This
algorithm was standardized by the American Society of Civil Engineers after bench-
marking against a panel of twenty indices for reference evapotranspiration ([1]; [44]).

Drought propagation studies look at the teleconnections between meteorological,
agricultural, hydrological, and socioeconomic drought. Many studies are classified
under the drought propagation umbrella, such as those of historical nature that mon-
itor oceanic phenomena like the El Nino Southern Oscillation ([43]; [4]), or the use
of global greening strategies as a mitigation effort ([41]; [14]). Studies of drought
propagation cover the entire globe, from China ([19]; [24]; [54]) to South America
([4]; [5]; [9]), Central Asia ([21]), Africa ([12]; [51]; [15]) and the United States ([2]).

Figure 3.9 presents a sample output from the National Drought Mitigation Cen-
ter. Their output has six seven different color based classification codes available
to diagnose a region. Attempting the application of Flux to Flow to generate these
images using the hybrid fields would only be a slight departure from the current body
of experiments. Having such a finite quantity of outputs means that the loss func-
tion needn’t be of the regressive variety but could take advantage of one of the many
classification-based loss functions ([25]), or potentially of the burgeoning transformer-
based modeling domain ([28]).

This experiment has several components that distinguish itself: 1, use of optimized
computing performance and efficiency; 2, knowledge and selectivity amongst the rich-
ness of the geospatial data landscape; 3, consideration at several orders of magnitude
of neural network complexity; 4, the openness of the technology; 5, consideration of
many experiment samples to root out bias; and 7, use primarily of a collaborative
green computing facility. The driving research questions behind this set of exper-
iments were: 1, what impact does the application of sea surface temperature have

upon the prediction of streamflow of large watershed basins; 2, how many overlap-
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ping, continuous, monthly measurements of gauged streamflow in two transboundary
basins can we easily obtain, and what are the characteristics of these measurements;
3, how does Flux to Flow perform when using monthly datasets and greater than one
but less than ten output targets? We find that sea surface temperature does have
a positive impact upon neural network model predictability of streamflow. Each of
these large basins was limited to less than ten. The measurements of discharge vary,
indicating a wide dynamic range in the study of these basins. This is expected, as
a backyard with a brook is never far away, and wisely planned cities are commonly
built around plentiful coiffeurs of surface water resources.

In the future, we may consider different ground truth data sources, particularly
the EPA ECHO repository. We also see modern and future satellite missions on the
horizon. Of note is the ECOSTRESS satellite and its signature evaporative stress
index (ESI) product ([8]; [13]). Following on the success of NASA’'s ECOSTRESS
is a planned joint initiative between the Indian Space Research Organization and
the French Space Agency, known as Thermal infraRed Imaging Satellite for High-
resolution Natural resource Assessment or ‘TRISHNA’, and the Copernicus Land
Surface Temperature Monitoring (LSTM) mission ([32]; [31]). Both are targeting
the latter half of the 2020s for mission launch and will improve the temporospatial
coverage of a similar product to ECOSTRESS, which has a resolution of seventy
meters by 70 m x 70 m per pixel. This is more than 10,000 times finer resolution
than the monthly MODIS product used within that has a pixel resolution of 9 km
x 9 km per pixel. However, MODIS has a much more frequent revisit time, seeing
the same location multiple times before ECOSTRESS does. This fact is part of the
motivation behind such follow on missions. In order to study changes of the planet
during the day at very fine resolutions from satellites that are orbiting around Earth,
we will need multiples. This practice of redundancy has been already put to work

in several satellite missions, such as the two MODIS instruments on the Aqua and
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Terra satellite platforms, the multiple GOES, Sentinel, Landsat, GRACE, and VIIRS
missions.

We lastly see the potential for the integration of equations such as those used
in the companion papers to NLDAS’s streamflow, the Saint-Venant equations ([53];
[46]). Physics-based machine learning is a field of its own. While we are pleased with
the use of the convolutional, image focused networks, we see the benefits of more
closely knitting historical hydrological advances into the bones of the neural network

and think it could help move all experiments to the highest echelon of performance

according to NSE ([36]).

3.6 Conclusion

Herein, we investigated the use of neural network architectures and how they can
be applied to river flow forecasting of two transboundary watersheds. Our inputs
to the networks were derived fields of meteorologically forced surface and subsurface
flow, and gauged streamflow data obtained from United States and Canadian bureaus
associated with hydrological monitoring. Flow fields only show observations for the
land, which can create issues and cause limitations to the quality of neural net model
generation and performance outcomes. In response, we also fused time-concomitant
sea surface temperature fields to the GLDAS observations of flow, finding a marked
difference in the prediction of streamflow. To bolster this study, we considered two
different basins of vastly different human imprints and found a clear watermark when
the basin is sufficiently artificially modified. We see a continuation of this work by
locals to other nations using their continuous gauged streamflow data, the fusion
of higher resolution datasets, translation for use as a drought monitoring prediction
system, or potential scaling of the system to consider many more streamflow sensors.
This study is focused on basins that are relatively high in latitude, and there is

certainly nuance in other locations that our modeling did not capture here. Selecting
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an equatorial location might produce different nuance. One potential suitor is Hawaii,
which would be an opportunity to use requisite higher resolution datasets because
of its relatively small size. Hawaii is unique because of the different climates like
those on the leeward and windward side of Oahu. It is also favorable because of the
relative ease with which continuous data can be secured. This future study might also
mark partnerships with an equatorial international institution to obtain continuous

streamflow measurements from their waters as a way to formally pollinate this work.
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3.7 Code Availability

Scripts are available at https://github.com/albertlarson/f2f holistic
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3.9 Appendix

Figure 3.1: Extents of the Yukon and Columbia River watersheds and gauge locations.
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Figure 3.2: Hydrographs of all gauged streamflow data. Second and fourth plots are
zoomed in versions of the same colors in the first and third plots. Both have low

discharges whose details are lost amongst the larger portions of the river.
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Figure 3.3: Sample observation of surface flow (Qs), subsurface or groundwater flow
(Qsb), Qs + Qsb, flows merged with SST but represented with a single colormap,
and flows merged with SST represented with two colormaps highlighting each physical
parameter’s unique dynamic range.
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Figure 3.4: Histograms of model predictability across all experiments delineated by
whether SST is included as part of the input or not.

Yukon NSE, No SST Yukon NSE, SST

80 | 120 1
100

60
80
40 60
40

20 1
W{Lu "

0 T T T I: T T IT|- T O T T T ||-L "-rLl T T
-2.0 -1.5 -1.0 -0.5 0.0 05 1.0 -2.0 -1.5 -1.0 -0.5 00 05 1.0
NSE NSE
Columbia NSE, No SST Columbia NSE, SST

| 60 |

40
50 -
30 1 40
20 30 -
20 1

10 I
0 T T T T T T T 0 T lnnnﬂﬂ T I?“ - T T _—
-2.0 -1.5 -1.0 -0.5 0.0 05 1.0 -2.0 -1.5 -1.0 -0.5 00 05 1.0
NSE NSE

84



Figure 3.5: Histograms of test results for Columbia experiments deconstructed by
neural network architecture at the time of training.

30

20

Columbia
No SST, 4 neuron

No SST, 30 neuron

No SST, 200 neuron

No SST, 1000 neuron

No SST, dcrrnn

15

30
20 30
20 10 20
10
10 5 10
0 0 (1] (1] -
-2 -1 0 1 -2 -1 0 1 -2 -1 0 1 -2 -1 0 1 -2 -1 0 1
NSE
Columbia
SST, 4 neuron SST, 30 neuron SST, 200 neuron SST, 1000 neuron SST, dcrrnn
20 30
20 ] 30
15 20
20
10
10
5 10 10
0 0 (1] (1]
-2 -1 0 1 -2 -1 0 1 -2 -1 (1] 1 -2 -1 (1] 1 -2 -1 0 1

Figure 3.6: Histograms of test results for Yukon experiments deconstructed by neural
network architecture at the time of training.
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Figure 3.7: Columbia & Yukon experiments using derrnn and the 1,000 neuron single
hidden layer neural networks, disaggregated by lag.
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Figure 3.8: Columbia & Yukon experiments using derrnn and the 1,000 neuron single
hidden layer neural networks, disaggregated by z-scored vs. non-z-scored.
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Figure 3.9: National Drought Mitigation Center Weekly Output, March 2, 2023,
Drought Monitor Output.
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