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ABSTRACT

Earth’s weather and climate changes dynamically, and humans must monitor the

evolution of our environment or fail to plan and adapt. Water is our most valuable

resource, and as such it is of the utmost importance to have a continuous view of

its movements as water cycles over, in, and under land, in the atmosphere, and in

the sea. One way that we observe the water cycle is with satellite measurements.

Unfortunately, the resolution of these instruments is typically too coarse to visualize

many transient phenomena of interest. If their vision is fine enough, the instrument

captures only a small space of Earth at any given time. Furthermore, it is valuable

to connect satellite-derived water cycle measurements of large watershed basins with

ground truth observations of the rivers flowing through these basins. These connection

operations, though, are time and cost prohibitive or limited in performance, with

efficient functions veiled behind black box closed-source solutions. Herein, all of the

above facts are investigated under the veil of a single name, Flux to Flow (F2F).

The name Flux to Flow encapsulates how the work takes several fluxes of geospatial

data and transforms them into more coherent flows of knowledge. F2F performs

metrologically well in the operation of streamflow forecasting when focused solely

on a single or a few hydrological monitoring nodes at a time. Based on the results,

future work might entail scaling up of the system to many computing nodes running

in tandem, observing more adjacent outputs, or in its application as a standard device

in connected municipal systems.
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PREFACE

This thesis follows the manuscript format. Each of the three within carry a similar

structure as is typical of the structure one might produce for an academic journal.

The three cords form one strand that benefit from being studied together.

Manuscript 1, “Discerning Hydroclimatic Behavior with a Deep Convolutional

Residual Regressive Neural Network”, looks at four United States basins and a single

streamflow measurement per basin. It also considers just one neural network archi-

tecture called Flux to Flow. Upon further consideration, we have realized that the

structure itself is more aptly called dcrrnn and pronounced discern. It is called this

for two reasons: 1, because of the nature of a trained mind’s ability to learn how

to discern the truth from a flurry of information; and 2, because it is an acronym

representing the phrase “deep convolutional residual regressive neural network”. The

name dcrrnn was accidental and an obfuscation device just to conceal as manuscript

1 was submitted to a double-blind submission. It was undesirable to share the name

Flux to Flow because of our ties to the name on the web already. As the work has

progressed, dcrrnn is now understood more appropriately as a very specific neural net-

work construction, whereas F2F encompasses the macroscopy of the work. Though

there is only a single architecture used in this manuscript, it is both dcrrnn and Flux

to Flow. This study considers about seven years of data, considering a daily time

scale.

Manuscript 2, “Deep Convolutional Residual Regressive Neural Networks and Sea

Surface Temperatures from Aqua and Argo in the 2000s”, focuses in greater detail

on a single water-focused essential climate variable (sea surface temperature). The

deployed experiments, similar to manuscript 1, features solely the dcrrnn architecture

under the name Flux to Flow. The time series studied is relatively short in time,

only considering a single year of monthly measurements; however, the size of the

geography studied is quite large, considering big pieces of the Atlantic, Pacific, and
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Indian oceans.

Manuscript 3, “Holistic Water Cycle Analysis via the Confluence of Climate

Model, Satellite, Ground Truth, and Machine Learning Signal Processing Technolo-

gies: Two North American Transboundary River Watersheds”, is best understood as

the confluence of manuscripts 1 and 2. We fuse measurements of sea surface tempera-

ture with measurements of land flow and create images that do not contain nan values,

a sometimes frustrating numerical data structure component. We compare the per-

formance of using these fused images against the original technique from manuscript 1

of simply clipping and z-scoring land surface flows and neglecting the ocean. We look

at more output targets per moment than manuscript 1, but fewer than manuscript

2. We also use several different neural network constructions to compare the dcrrnn

structure against other simpler neural network structures.
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1.1 Abstract

The impact of climate change continues to manifest itself daily in the form of

extreme events and conditions like droughts, floods, heatwaves, and storms. Bet-

ter forecasting tools are mandatory to calibrate our response to these hazards and

help adapt to the planet’s dynamic environment. Here, we present a deep convolu-

tional residual regressive neural network (dcrrnn) platform called Flux to Flow (F2F)

for discerning the response of watersheds to water cycle fluxes and their extremes.

We examine four United States drainage basins of varying acreage from smaller to

very large (Bear, Colorado, Connecticut, and Mississippi). F2F combines model and

ground observations of water cycle fluxes (precipitation, soil moisture, surface runoff,

sub-surface baseflow) to simulate, visualize, and analyze watershed basin response

to the varying climates and magnitudes of hydroclimatic fluxes in each river basin.

Experiments modulating time lag between remotely sensed and ground truth mea-

surements are performed to assess the metrological limits of forecasting with this

platform. The resultant mean Nash Sutcliffe and Kling Gupta efficiency values are

both of greater value than 90%. Our results indicate that F2F can be a powerhouse

for forecasting watershed response to hydroclimatic extremes in a changing global

climate.

1.2 Keywords

water, climate, sustainability, supervised representation learning, societal consid-

erations

1.3 Introduction

Water connects all living things on Earth. It is wielded to power electronic devices,

enables plants, food, and animals to grow, serves as the living and recreational space

for all creatures, and is nourishment to the human body. It has been both the
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subject of, platform for, and weapon of choice in numerous conflicts. Global hydraulic

infrastructure is highly variable. Dirty water can be a source of disease and death.

It is branded, modified, and sold at differing levels of purity and concentration. The

cost of equipment to control the flow of water is high, maintenance is frequent, and

changes in demand and supply for water as a resource are constant sources of concern.

Human activities have changed and continue to change Earth’s environment. The

changes are visible in both short (meteorological) and long (climatological) time scale

responses ([58]). As the temperature of Earth increases, the amount of snow and sea

ice loses volume over time ([52]; [46]), sea levels rise and swallow up once inhabited

land ([59]; [55]), storms intensify ([37]), droughts last longer ([62]), floods become

more severe ([45]; [29]), animal populations go extinct ([50]), and the availability of

freshwater becomes more unreliable ([21]). Concurrently, manmade Earth observation

and control systems continue to improve ([15]; [47]).

Watershed modeling is an important field of research that involves predicting

the movement of water through the Earth’s system. Earth’s system consists of the

land, atmosphere, and ocean. Many models have been developed to simulate and

predict hydrologic processes, including rainfall, runoff, and evapotranspiration. One

popular model is the Soil and Water Assessment Tool (SWAT), which has been used

extensively to model hydrology and water quality in watersheds ([1]). Another model,

the Variable Infiltration Capacity (VIC) model, has been employed to study changes

in streamflow and soil moisture ([6]). General circulation models (GCMs) are an

additional important tool in hydrology modeling. GCMs simulate the Earth’s climate

system, including atmospheric circulation, ocean circulation, and the cryosphere, and

provide predictions of future climate conditions ([38]). These models have been used

to study the impacts of climate change on water resources and hydrologic processes,

such as changes in precipitation patterns and snowmelt runoff ([64]). In addition,

GCMs can be coupled with regional ocean modeling systems (ROMS) to study ocean
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circulation and its impact on coastal ecosystems ([26]). The Massachusetts Institute

of Technology General Circulation Model (MITgcm) is another popular model used

to simulate ocean circulation and study the impacts of climate change on marine

ecosystems ([43]).

Here, we approach the topic of watershed modeling with a deep neural network.

We observe the connections between model output of four United States drainage

basins to actual gauged in the river measurements. All basins are larger than a million

acres and thus provide ample data to observe how changes in runoff and subsurface

flow impacts the quantity of water discharging from the major river within the basin.

Given our results, we envision future work applying the same tools to study and

consider all of Earth’s watersheds at fine fidelity.

1.4 Materials & Methods

1.4.1 Study Areas

Four United States drainage basins with areas of greater than one million acres

each were selected as study areas and are shown in Figure 1.1. The Bear River and

Connecticut River watersheds are significantly smaller than either the Mississippi

River or the Colorado River basins. The satellite imagery used observes approxi-

mately 100 square kilometers of area (on the order of 25,000 acres) in each pixel.

1.4.2 Satellite Derived Observations

For each basin there are two input images extracted from raw data obtained

through the NASA Goddard Earth Sciences Data and Information Services Center.

The raw data is National Land Data Assimilation System (NLDAS) model output.

NLDAS is a project run by several United States based institutions and universities.

NLDAS takes continental scale meteorological data parameters (e.g., air temperature,

wind speed, surface pressure, precipitation, incoming radiation, specific humidity) as
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input and deterministically creates water and energy flux layers as outputs. The

NLDAS project in its second phase applies several different water and energy balance

algorithms to create flux outputs from one common set of meteorological inputs.

Here, the Noah water and energy budget algorithm is used. The channels of interest

are components of water flux, specifically surface and sub-surface runoff, as they

collectively represent the lateral movement of liquid water along and under the surface

towards the terminal drainage point at a given point in time ([67]; [41]).

1.4.3 Ground Truth Measurements

Concurrent with the two NLDAS channels is a single gauged in the river stream-

flow measurement. Daily streamflow measurements from sites near the terminus of

each basin are obtained from the United States Geological Survey’s National Water

Information System. The USGS operates nearly 30,000 daily streamflow data collec-

tors ([17]). Sites were selected based on the availability, proximity to the terminal

point of the basin, and relative continuity of data. Gaps in data collection are solved

with linear interpolation.

Ground truth streamflow data are critical for hydrologic modeling, as they provide

a means of validating and calibrating model results. The USGS National Water

Information System (NWIS) is a primary source of ground truth streamflow data in

the United States ([54]). The NWIS is a network of over 1.5 million sites that collect

measurements of water, some of which are then used to calculate streamflow ([48]).

These gauges are operated by the USGS in collaboration with other federal, state, and

local agencies, as well as private organizations. The data collected by the NWIS are

used for a wide range of applications, including flood forecasting, water management,

and environmental assessments ([57]).

The NWIS stream gauges provide a valuable resource for monitoring and manag-

ing the nation’s water resources. The network covers a broad range of water bodies,
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including rivers, streams, lakes, and reservoirs, and the data collected help to sup-

port a variety of water-related activities. For example, the streamflow data collected

by the NWIS are used to support flood forecasting efforts, which are essential for

public safety and property protection. In addition, the data are used to assess water

availability for agriculture, industry, and domestic use, and to monitor the health of

aquatic ecosystems. Finally, the NWIS streamflow data are used by researchers and

policy-makers to develop and refine models of the water cycle, which are critical for

understanding the impacts of climate change and human activities on water resources.

The USGS has a long history of collecting and analyzing streamflow data, dating

back to the late 19th century when the agency was established ([5]). Since then, the

network of stream gauges has expanded and become more sophisticated, incorporating

new technologies such as acoustic Doppler current profilers and advanced telemetry

systems ([48]). The USGS has also played a key role in developing standardized

methods for collecting, processing, and analyzing streamflow data, which have been

adopted by other countries around the world ([30]). Today, the USGS continues to

operate and maintain the largest network of stream gauges in the United States, pro-

viding a valuable resource for hydrologic research and water resources management

([57]). With the growing importance of water resources management and the increas-

ing threat of climate change, the role of the NWIS in monitoring and managing the

nation’s water resources is more critical than ever.

1.4.4 Data Collection and Preprocessing

For this study, we looked at the time range starting on January 1, 2015, until the

most recent output available, March 1, 2022. The NLDAS model output is available

in a monthly and hourly product. We combine the hourly data available for surface

and subsurface streamflow into a daily product. The raw hourly NLDAS product

with all variables is a directory sized 351 gigabytes comprised of 62,805 hourly files.
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The summing and extraction of lateral flows shrunk the total file size by a factor of

more than 150. Each raw data file consumes 5.8 megabytes of disk space, while each

daily surface and subsurface flow extraction 822.7 kilobytes. Filtered data consumes

only 2.1 gigabytes and can easily be held on a graphical processing unit when trained

with the neural network. File size decreases further when clipped to a particular

basin. Images are z-scored relative to themselves, while gauged streamflow data is

z-scored relative to the entire time series of seven years. Whitening has been shown

to improve the performance of training a neural network ([36]; [13]).

1.4.5 Treatment

For this experiment, we constructed a deep, convolutional, residual, regressive

neural network. The images of Earth’s surface and subsurface water flow are passed

through this network. Eventually, the transformed images reach a destination where

the image shapes have been constrained in size to match that of the target of the

input pair; here, the target is one pixel as the daily value for gauged streamflow is a

single physical measurement. The problem is one of regression because the prediction

of streamflow is continuous and can theoretically be any value greater than zero. We

use convolutional neural networks because our input to the network is a sequence of

two channel images ([53]). We also use residual learning, which allows us to make the

network very deep but control the opacity of the initial structure of the image. This

makes training faster ([27]). Rectified linear unit activation functions are applied in

all but the last layer of nodes, and batch normalization is used in the residual layers

([2]; [33]). Batch normalization is like the z-score treatment in our preprocessing step.

Finally, we selected a variant of stochastic gradient descent for optimization of the

neural network nodes ([3]; [39]).
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1.5 Results

Hourly NLDAS model outputs of surface and subsurface flow are summed to daily

accumulations over the time span of January 1st, 2015, to March 1st, 2022. This

time series is 2,617 long comprised of two channel images. Channels are surface and

subsurface flow measured in units in kilograms per square meter. Units are analogous

to the weight of water in a location. Sample observation output from each basin

capturing flow behavior on June 6th, 2021, is displayed in Figure 1.2. The effects of

spatial resolution are apparent, as the Bear River and Connecticut River basins have

pronounced rectangular edges due to their relatively small size. This pixelation effect

is not present in the Mississippi River and Colorado River observations of lateral flow

from the basin view at this constrained figure size.

Gauged streamflow measurements of the four target rivers are significantly dif-

ferent in magnitude from one another; therefore, we process each with a z-score

treatment to center their mean values around the number zero and standardize each

increasing and decreasing integer around intervals of standard deviation. Figure 1.3

shows plots of the gauged streamflow measurements of each basin are plotted in two

ways. The four individual strip charts show the change in streamflow over time,

and the single overlapping histograms show how often actual measurements in the

respective basin occur relative to the average discharge. This is a single dimensional

z-scoring system. We also perform a two dimensional treatment to each of the in-

put channels, surface, and subsurface streamflow. Whereas the 1-D treatment uses

the entire time series of gauged streamflow measurements for computation, 2-D z-

scores are computed based on a single image at a time. Modifiable hyperparameters

controls of the network are basin under observation, lag in time between input and

output datasets, number of training epochs (forward and backward passes of the neu-

ral network) and the ratio of training data to testing data. There is also an override

for stopping the model training early when the training data has a Nash Sutcliffe
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efficiency (NSE) value of a variable efficiency percentage.

Figure 1.4 shows a sample output from one configuration of the neural network.

The topmost graph illustrates the time series of discharge measurements in cubic feet

per second of the Bear River. This graph is rotated ninety degrees relative to its

sibling hydrograph in Figure 1.3. There is a notable seasonality to this streamflow

measurement of Bear. Spring brings melting snowpack in the nearby mountainous

terrain and subsequent increases in neighboring river flows. Spring melting snow in

2021 appears more subdued than all other years observed. The Bear River drainage

basin is located in between the Great Salt Lake and Yellowstone National Park in the

Rocky Mountain region of the United States. The eponymously named river flows in

a counterclockwise loop.

The second row plots each modeled observation in the time series against its

respective actual measurement. On the left is a study of the model output ordered on

the x-axis from low to high flows and corresponding actual measurement on the y-axis.

The right plot retains the same axis labels, but instead observes spatial proximity of

values. Darker points are more commonly occurring ranges of flow. The left plot

also contains two lines of best fit, the ideal or desired line found from the data, and

the actual line of fit as exists between the actual gauged streamflow and the neural

network model output of streamflow from surface and subsurface flow.

The third and final row shows epochal values during the neural network training

process. On the left, the average error between the actual measurements and network

output declines as the model goes through its iterations of propagate and backpropa-

gate. Concomitant with error vs. epoch is efficiency vs. epoch. As the error declines

towards zero, the NSE measurement increases towards 100%. Here, neural network

set to stop at an NSE value of 95%, which occurs in the sixth epoch.

We perform nine iterations of the configuration of 252 experiments. For each of

the four basins, there are sixty three experiments per iteration based on nine possible
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values of lag and seven possible values of training and test data split, equating to

2,268 individual runs of the same neural network. Each experiment either stops when

the measurement of average NSE of the training dataset within an epoch equals

95% (bottom right, Figure 1.4) or the total number of epochs of back and forward

propagation of the entire basin dataset reaches 100. Computations are constrained

to a single node with two central processing units, a single NVIDIA GeForce RTX

2080 Ti graphical processing unit, and no more than 130 gigabytes of random access

memory. Our platform is written in the python programming language and managed

with the miniconda package manager. The total run time to compute the experiments

within was 83.0 hours.

1.6 Discussion

The results presented indicate relatively favorable performance of the neural net-

work architecture when transforming of surface and subsurface flow into a prediction

of basin gauged streamflow; the kernel density estimates (KDE) in Figure 1.5 and Fig-

ure 1.6 illustrate this point. We executed a total of more than 2,200 experiments in

total using the common architecture. We use two hydrological metrics: Kling Gupta

(KGE) and Nash Sutcliffe (NSE) ([49]; [25]; [24]; [40]). For each of these metrics, the

peak resultant merit value of the 2,268 experiments is greater than ninety percent

with a standard deviation of less than 0.06. The results are tolerant to lagging the

data beyond the residence time of water in the atmosphere ([63]; [20]).

Others have observed the changing water quantity of the Mississippi. One study

used NLDAS data focused on a subsection of the Mississippi with a higher quantity

of streamflow target sites ([51]). Another group considers a different data system

altogether for watershed modeling on the upper Mississippi basin ([12]). Some groups

suggest that NLDAS is too simplistic and decided to create their own blend. They

take a much broader approach than the scope of the problem observed here ([60]).
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The same is true for another study, where the study considers several different models

and about 1,000 small river basins ([8]). Some use meteorological data as a predictor

for electric outages, as seen in a study looking at Connecticut. They, too, use the

Nash Sutcliffe efficiency as a figure of merit ([68]) but are approaching the problem

with a different lens. Their target is a smaller population and the risk of being without

electric power.

This process can be expanded in different ways. Our study relies on the inter-

nal programming of NLDAS to compute surface and subsurface flow. There is much

uncertainty in these observations based on the natural heterogeneity of the land sur-

face. We do not look at the independent influence of any single forcing variable. Take

snow, for example. In large mountain proximal basins such as those near the Rocky

Mountains or Himalayan ranges, accumulation of subzero degrees Celsius water in

solid form provides a continuous upland buffer tank for the communities with which

the river down land serves. As the relative presence of carbon dioxide increases and

the land temperature responds in agreement, the duration and scale of snow melt

and sea ice responds. It is challenging to equate with exact certainty how much solid

water exists. To a degree, interpolating satellite data with gauged data is sufficient,

but these apparatuses are challenging to maintain in cold temperatures or in places

of very high altitude. One could elect to observe more individual locations as tar-

gets, therefore making the relationship no longer image to single value at a given

time, but instead image to image. There are studies that consider the impact of slow

moving oceanic and atmospheric abnormalities upon the hydrology of the land. Inde-

pendent variables include the Madden-Julian oscillation ([35]), the El Niño–Southern

Oscillation ([31]), and the Atlantic meridional overturning circulation ([34]).

While the NLDAS product used here is of a particular spatial fidelity, the Global

Land Data Assimilation System is coarser in its resolution. It is beneficial to the

scientific community to have a clearer picture of the meteorological forcing and en-
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vironmental responses in the ocean, land, air, and mixed interfaces. One could use

this framework to fuse the high resolution NLDAS product with the global GLDAS

product and evaluate the result according to one common set of metrics. The soft-

ware could be packaged and ported to use with an already existent embedded in

situ mesh system to provide forecasting information. Instead, one might consider

looking at a different time signature, such as seasonally decomposed but over several

years. Instead, one might introduce higher resolution localized water quality data

into the model. By tracking environmental statistical anomalies relative to other

points in time and relative to the global community, municipal decision makers can

clue into the trajectory of their land, their structures, and their constituents within.

The choice to retreat is not to be approached lightly, but in some instances is be-

coming the necessary measure ([56]; [28]). This intelligence can also be placed in the

hands of consulting engineers to distribute in new and existing infrastructure. Logic

is necessary to manage assets of complex hydraulic systems (pumps, motors, chemi-

cal feed, aeration, dewatering, gates, valves), and digital twin systems are becoming

fashionable.

Water is a vital resource for human societies, and managing water resources is a

complex task that requires continuous attention and adaptation. In recent years, the

world has witnessed several extreme events that have highlighted the importance of

effective water management strategies. Two such events that occurred on opposite

ends of the water quantity spectrum were the 2022 Pakistan and Mississippi floods

and the 2017 Cape Town South Africa water crisis.

In 2022, Pakistan and the United States were hit by massive floods that caused

widespread devastation. In Pakistan, heavy monsoon rains led to flooding across the

country, affecting millions of people and causing significant damage to infrastructure

and property ([23]). Similarly, in the United States, the Mississippi River experienced

severe flooding due to heavy rainfall, causing extensive damage to homes, businesses,
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and farmland ([10]). These events demonstrate the devastating impact that extreme

water events can have on communities and the urgent need for improved water man-

agement strategies.

Strong rotational winds cause the hurricanes and cyclones which carry bulk quan-

tities of water. These catastrophes are notably in their brute strength, and historically

have caused the displacement of people, loss of lives, damage to infrastructure, and

disruption of social and economic systems. One of the most notable wind driven

water-based disasters in recent years was Hurricane Harvey in 2017, which caused

catastrophic flooding in Texas and Louisiana ([7]). The storm resulted in over eighty

fatalities and more than 125 billion in damages, making it one of the costliest natural

disasters in US history. The intensity and frequency of hurricanes are expected to

increase due to climate change, resulting in an increased risk of devastating floods

and damage to coastal infrastructure ([18]). Another significant event was Cyclone

Idai, which hit Mozambique in 2019, causing widespread damage and loss of life. The

storm resulted in over 1,000 fatalities and an estimated economic loss of over 2 billion

([32]). Cyclone Idai was one of the worst weather-related disasters to hit the south-

ern hemisphere, highlighting the increasing vulnerability of developing countries to

extreme weather events.

On the other end of the water quantity disaster spectrum, the 2017 Cape Town

water crisis brought attention to the challenges of managing a sustained lack of re-

newable water resources over a prolonged period of time. The city of Cape Town,

South Africa, faced an unprecedented drought that lasted for several years, leading to

a severe water shortage ([4]). The crisis prompted the implementation of strict water

rationing measures and increased investment in water conservation and management

strategies. This event highlighted the importance of proactive and adaptive water

management strategies in the face of changing environmental conditions. Another

notable drought event is the recent ten year drought in California, which has led to
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significant economic losses with farmers and other industries struggling to cope with

reduced water supplies ([11]). Although, California has seen an anomalously large

influx of water due to an atmospheric river unleashing massive quantities of snow and

rain ([66]; [22]; [14]).

The impact of these water shortages can be devastating, especially in developing

countries where water scarcity can lead to malnutrition, disease, and poverty ([61]).

The impact of water-based disasters is not limited to the immediate physical damage

they cause. These disasters can have long-lasting effects on the environment, including

water pollution and ecosystem degradation. For example, the 2011 Fukushima nuclear

disaster in Japan led to the release of radioactive materials into the ocean, resulting in

significant environmental damage ([42]). The incident had a significant impact on the

marine ecosystem, with some species of fish still showing elevated levels of radiation

years after the disaster.

Improving water management strategies requires a multi-faceted approach, in-

cluding better monitoring systems, enhanced cooperation with the environment, and

increased public awareness and participation. Effective water management strategies

should aim to balance the competing demands of human society and the natural en-

vironment while promoting sustainable and equitable use of water resources. The

opportunities to improve our monitoring systems are many; however, more people

are needed in the conversation to consider how we might better cooperate with the

environment.

Effective management and mitigation of water-based disasters require coordinated

efforts from multiple stakeholders, including governments, non-governmental organi-

zations, and the private sector. Such efforts include improving early warning systems,

developing more resilient infrastructure, and promoting sustainable water manage-

ment practices. Early warning systems play a crucial role in preparing for and re-

sponding to water-based disasters. These systems can provide timely and accurate
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information to people in affected areas, enabling them to take necessary precautions

and evacuate if necessary ([19]). The development of more resilient infrastructure is

also essential in mitigating the impact of water-based disasters. For example, the use

of green infrastructure, such as rain gardens and permeable pavement, can help to

reduce the impact of flooding by slowing down the rate at which water enters the

drainage system ([65]). Additionally, the use of nature-based solutions, such as wet-

land restoration, can help to improve the overall resilience of ecosystems to climate

change and extreme weather events ([9]).

Finally, it is crucial to recognize that the impacts of water-based disasters are

not distributed equally. Vulnerable populations, such as those living in poverty or in

marginalized communities, are often disproportionately affected by these events ([16]).

In addition, climate change is exacerbating the frequency and severity of water-based

disasters, particularly in regions with already limited resources and infrastructure

([44]). Therefore, addressing the root causes of vulnerability and promoting equity

in disaster management and response must be an integral part of efforts to mitigate

the impacts of water-based disasters.

1.7 Conclusion

In this study, we introduce a fresh perspective to studying and understanding the

water cycle with a learned representation using modern techniques and data systems.

Our results show that a deep convolutional residual regressive neural network (dcrrnn)

combined with water flux and gauged streamflow data can exhibit strong forecasting

performance according to standard hydrological statistical figures of merit. We used

the dcrrnn concept to develop a platform called Flux to Flow (F2F) and examined

four major river basins across the United States. F2F can provide strong forecasting

performances (Nash Sutcliffe and Kling Gupta efficiency above 90%) in most cases

and at various time lags. Through the careful use of visuals and data management,
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this approach can provide satisfactory performance for various locations, degrees of

fidelity, time scales, and parameters of interest for the water resources and climate

science community.
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1.8 Code Availability

Scripts are available at https://github.com/albertlarson/f2f
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1.10 Appendix

Figure 1.1: Drainage basins under investigation

Figure 1.2: NLDAS daily surface and subsurface flows
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Figure 1.3: Strip chart and histogram plots of z-scored gauged streamflow observa-
tions
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Figure 1.4: Neural network sample output
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Figure 1.5: Kernel Density Estimates of the 2,268 experiments. Left shows grand
NSE and KGE.

Figure 1.6: 3-D merit plots, basin delineated by color. Intensity of color indicates
higher frequency within bin range.
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2.1 Abstract

Sea surface temperature (SST) is an essential climate variable that can be mea-

sured via ground truth, remote sensing, or hybrid “model” methodologies. Here, we

celebrate the progress of high-resolution sea surface temperature via the acknowl-

edgement of a few technological advances from the late 20th and early 21st century.

We develop a deep convolutional residual regressive neural network (dcrrnn) plat-

form called Flux to Flow (F2F) and fuse AMSR-E and MODIS into a higher resolu-

tion product for capturing gradients and cloud gaps that are otherwise unavailable.

Specifically, we utilize three snapshots of twelve monthly SST measurements in 2010

as measured by the passive microwave radiometer AMSR-E, the visible and infrared

monitoring MODIS instrument, and the in situ Argo dataset ISAS. The performance

of the platform and success of this approach is evaluated using standard figures of

merit. Looking forward, we hope to integrate F2F with future satellite data streams

such as the ECOSTRESS or Surface Water Ocean Topography (SWOT) datasets to

enhance the precision of coastal regions observations of water.

2.2 Introduction

Water is both an essential and abundant resource on Earth, and its availability

and quality are critical for sustaining life and ecosystems. Though it is abundant, the

majority of Earth’s water, about 97%, is found in the ocean, while the remaining 3% is

freshwater found in glaciers, lakes, rivers, and underground aquifers on land. Water is

not only crucial for sustaining life, but it also plays a vital role in shaping the Earth’s

climate and weather patterns. One significant but understudied climate variable that

hydrologists consider is sea surface temperature. SST has a profound impact on the

water cycle, specifically evaporation ([18]). Over ocean anomalies like atmospheric

rivers can lead to both anomalous and enormous quantities of meteorological water

falling on land ([3]). The same is true in the reverse, as the failure of the rains in India
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are influenced by the status of the nearby Bay of Bengal and Indian Ocean ([21]).

Understanding the relationship between sea surface temperature and the water cycle

is critical for predicting and adapting to extreme events, managing water resources,

and sustainable the global ecosystem.

Evidence continues to mount that human beings through industrialization have

modified and are continuing to significantly modify the climate. However, the mod-

ern cause for concern is the rate at which our climate has changed rather than the

Boolean of has it or has it not. Measurements of carbon dioxide (CO2) tell the story:

detected values of atmospheric CO2 have increased by 50% of the starting value at the

advent of industrialization ([4]). Invariant to latitude and longitude, the impacts are

felt everywhere. Earth’s response to our stimuli manifests in the form of heat waves,

stronger storms, longer periods of drought, greater impulses of meteorological water

accumulation over land, and a general increase in environmental variability. While

in wealthy communities, modern civil infrastructure serves as a boundary layer to

environment-related catastrophes, the poor and powerless are unequally yoked. One

must consider also the importance of the ecology itself. As humanity conquers the

environment, in what state are the creatures of the atmosphere, land and oceans?

What does the next five, ten, five hundred years look like at the current rate? If

deemed unacceptable, what changes can be made to mitigate or adapt to implica-

tions of past and present poor actions? What are the global environmental quality

standards? How can standards be enforced in unequal nation states?

There are many global environmental observation systems that study the entire

Earth from a distance. The sheer volume of effort and observation output can be

gleaned by world wide web crawling one example: the details of the Coupled Model

Intercomparison Project website. Through this project, expert parties from all over

the globe share the effort of simulating Earth by focusing on their separate silos

whilst having common tunnels to assemble, communicate, benchmark, and improve.
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Remote sensing (RS) instruments have recently (1950 – present) grown in frequency

of occurrence, capability, availability, and affordability. Attached to planes, balloons,

spacecraft, or other autonomous means, these devices capture images in a controlled

fashion over medium to large portions (swaths) of the land, atmosphere, and ocean.

The growth of global RS data is pivotal to our ability to continuously view the

macroscopic climate system. The output of these RS devices can be studied with a

variety of optical techniques, in most cases altered via some logic to provide a more

value-added product depending on the data consumer’s needs.

For example, consider the delineation of processing levels provided in the peer-

reviewed document coinciding with the deployment of the ECOSTRESS instrument

([6]). A lower value processing level (L0, L1) indicates raw measurements of electro-

magnetic radiation from the Sun through Earth’s atmosphere off the land / water sur-

face, back up to through the atmosphere to the satellite instrument. In turn, a higher

value (L2 – L4) indicates the generation of physical parameters, gridding of swath

data, and data assimilation with other parameters. In the instance of ECOSTRESS,

the higher levels refer to land surface temperature, emissivity, measures of evapotran-

spiration, and at Level 4 evaporative stress and water use indices.

Here we investigate the temperature of the ocean’s surface (SST). This target is

chosen because of its focus on the behavior of water in the environment, its importance

in numerical weather and climate forecasting, and detectability via satellite-mounted

RS instrumentation. Also, it has matched continuous ground truth temporospatial

measurements that can be investigated for intercomparison of dataset bias, variances,

and uncertainties. While it is not practical to grid the entire surface of Earth with

sensors, in many situations and places it is extremely valuable to use arrays of dense,

spatially linked precise in situ measurements. Satellite observations have a coarse res-

olution and can miss many interesting small-scale anomalies within the hydrosphere.

We compare the raw satellite observations to the lower resolution but more precise
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measurements of sea surface temperature. We apply a treatment to the lower reso-

lution but generally more available satellite instrument (AMSR-E), setting its target

output to be the higher resolution MODIS product. Our hypothesis is that fusing the

AMSR-E data to MODIS data will create a product that is closer in performance to

MODIS than its AMSR-E input.

2.3 Materials & Methods

2.3.1 Sea Surface Temperature (SST)

The origin of SST as a continuously monitored variable began when Benjamin

Franklin captured measurements of the ocean as he traversed the Atlantic, acquiring

data and synthesizing these observations into information about the Gulf Stream.

There is a rich history from that point forward to the present day, and a thorough

review available in the literature ([16]).

SST is largely academically segregated into the field of physical oceanography.

Nevertheless, the connection between ocean, atmosphere, and land are intimately

intertwined. There is a trickling down from global SST anomalies like the El-Niño

Southern Oscillation, the Madden Julian Oscillation, the Atlantic meridional over-

turning circulation, western boundary currents, gyres, and eddies to the availability

of food, energy, and clean drinking water. Consequently, better understanding and

application of oceanic parameters in consideration of land-based hydrology means

improved forecasting and preparation for the future.

2.3.2 Aqua

The Aqua satellite was launched on May 4, 2002 ([19]). Upon it, two instruments

sit: AMSR-E and MODIS. Both, among other things, are designed to study the

temperature of the ocean. The measurements obtained as the satellite is moving

from South Pole towards North always crosses the equator at approximately 1:30 PM
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local time nadir (directly below the satellite). In the downward portion of the orbit,

the satellite crosses the equator at 1:30 AM local time nadir.

2.3.3 AMSR-E

AMSR-E is a passive microwave radiometer ([13]). The acronym stands for Ad-

vanced Microwave Scanning Radiometer for Earth Observing System. There are

several products produced on top of the raw radiance data collected by this instru-

ment, and the AMSR-E data is processed by different ground stations depending on

the parameter of interest. The produced datasets contain latitude, longitude, sev-

eral physical parameters (e.g., SST, Albedo, soil moisture) as well as other pertinent

metadata. As it pertains to sea surface temperature, AMSR-E is available in Level 2

or Level 3 products, and as part of Level 4 assimilation system output.

To detail a sample, one single Level 2 netCDF (.nc) file containing AMSR-E data

was downloaded. The record selected is that of March 3rd, 2004, with a UTC time

of 01:07:01. The file contains three coordinates (latitude, longitude, and time) and

thirteen data variables.

Each variable is a single matrix comprised of columns and rows of measurements.

The important distinction here is that the data structure is stored to reflect the path

of the orbit. See Figure 2.1. When the sea surface temperature is plotted as it sits

in the matrix, it is difficult to discern what is transpiring. There appears to be some

curvature of the measurements, but other than that little is known to an untrained

eye beyond the title and colormap.

Inclusion of the latitude and longitude coordinates, as well as a global basemap

generates a clearer picture as seen in Figure 2.2. A single Level 2 AMSR-E SST file

contains matrices representing one full orbit around the globe. Each file holds par-

tially daytime and partially nighttime observations. Because of diurnal warming, it

is desirable to separate the nighttime and daytime passes. Furthermore, many anal-
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yses are comprised of an ensemble of satellite observations from different platforms

such as this one. A grid makes for more orderly computations at large spatial scales.

Certainly, one could elect to grid every observation to the AMSR-E or MODIS native

product coordinate system. With our experiments, we choose the path of rectangular

gridding. We consider the Level 3 product because of the interest in spatial relation-

ship across large geographic scales and variable time (daily, weekly, seasonally, yearly,

generationally).

The Level 3 equidistant rectangular gridded product is accessed via the NASA Jet

Propulsion Laboratory’s Physical Oceanography Distributed Active Archive Center

(PODAAC) and was produced by Remote Sensing Systems of Santa Rosa, California.

This product comes in 25 km resolution and is delineated by daytime and nighttime

passes of the satellite. The time series runs from June of 2002 until October of 2011

when the AMSR-E instrument ceased functioning. Figure 2.3 illustrates the point that

even without explicitly defining the coordinate system in the visualization, the matrix

of SST values is already placed in proper spatial order. Figure 2.4 reinforces the fact

that little change occurs with the inclusion of latitude and longitude coordinates when

plotted on a rectangular grid.

We accumulate the daily daytime and nighttime readings from AMSR-E into

monthly products. While a monthly product has already been produced for use with

the Climate Model Intercomparison Project, AMSR-E CMIP5 as available from the

does not delineate between daytime and nighttime. Here, we simply compute the

monthly average for daytime and nighttime passes on a pixel-wise basis for each

month. We finally re-grid the AMSR-E data to the MODIS L3 grid.

2.3.4 MODIS

MODIS, or Moderate Resolution Imaging Spectroradiometer, measures thirty-six

different radiance bands in the infrared and visible ranges of the electromagnetic spec-
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trum ([5]). Level 3 sea surface skin temperature as obtained from MODIS comes in

4 kilometer and 9 km products, and is derived from a subset of the thirty-six radi-

ance bands. The products are available in daily, average of eight days, and monthly

products. They are also delineated by daytime and nighttime passes of the Aqua’s

polar-orbiting nature. SST products deriving from MODIS are further specified by

the length of the waves within the thermal infrared range used to derive the measure-

ment: longer waves (11–12 microns) and middling waves (3–4 microns). The MODIS

documentation state that the 3–4 micron wave SST product is less uncertain, but only

usable at night because of the daytime sun glint impact on 3–4 micron waves. We

use the long wave 11–12 micron infrared measurements to keep constant the source

of both daytime and nighttime passes.

The MODIS Aqua Level 3 SST Thermal IR Monthly 4km V2019.0 product comes

with latitude and longitude coordinates, SST values and per pixel quality measure-

ments denoting when contamination is likely. The grid is equidistant rectangular, a

match with the AMSR-E grid but at a finer original resolution. Of the over thirty

million pixels for an entire day of 4 km MODIS pixels, 90% of them in the random

sample selected here are deemed contaminated and filtered out (Figure 2.5). This con-

trasts with the 50% loss of AMSR-E pixels. This great loss in pixels due to quality

is attributed to cloud contamination. To compensate, we use the monthly product

(Figure 2.6) where a greater amount of time has transpired, allowing for a higher

probability of clean global coverage. A randomly sampled MODIS monthly image

yields 50% loss, in line with the AMSR-E daily product and much improved upon

relative to the daily MODIS observation files.

2.3.5 Ground Truth Measurements

For a source of ground truth data, we selected the “In Situ Analysis System”

(ISAS) dataset obtained from the University of California’s Argo repository and pro-
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duced by a consortium of French institutions ([8]). An important constraint for this

work was to obtain only the surface level measurement of temperature at the highest

frequency available during the years of both AMSR-E and MODIS. These products

are provided in a gridded format are used to observe temperature measurements at

many depth levels. In the publication attached to the ISAS dataset ([8]), the target

physical quantity is steric height and ocean heat content; with these as their target

output, gridded depth-dependent temperature is stored as a byproduct. The 0.5 de-

gree monthly dataset is presented in a Mercator projection, slightly different than the

AMSR-E and MODIS grids. Mercator lines of longitude have a uniform distance in

between them; the distance between latitudes from the equator changes. Identical to

AMSR-E, we re-grid this data to the MODIS grid and coordinate system.

2.3.6 Treatment

The treatments we apply to the data are several configurations of one common

concept: neural networks. Neural networks are not new, but the growth of graph-

ical processing units (hardware) has enabled them to flourish in software. Neural

networks are a type of learned representation. A structure is fed connected input

and target pairs. Based on the predictive quality of the initial network structure, an

error between the neural network output and the target occurs. This error is in turn

fed to an optimization algorithm that iteratively and slightly alters each “neuron” of

the initial network structure until it reaches a designated optimal state. Via many

small calculations and the simultaneous application of statistical mechanics, neural

networks are known to provide qualities like that of a brain, such as capturing spa-

tial eccentricities and temporal changes in sets of related images. Neural networks

are applied to a range of tasks from the more mundane such as learning a quadratic

equation, to the more cutting edge, like extreme event forecasting or cancer detection.

Transfer learning has become commonplace in the field of machine learning ([24]).

37



Transfer learning places an emphasis on creating reusable treatment structures for

others to build on top of without inadvertently causing the audience to get lost in

possibly unimportant details. We employ transfer learning to create a complex config-

uration with a relatively short learning curve. The neural network is characteristically

deep, convolutional, residual, and regressive. Our construct is inspired by the work

of residual networks ([10]). However, our problem is one of a regressive nature. Sea

surface temperature has a continuous temperature range that it exists within. This

is a notable difference to some of the more common introductory neural network ex-

amples, such as those associated with the MNIST and CIFAR datasets where the

number of possible outputs is very small ([25]; [15]). Loss functions associated with

regressive problems are constrained to just a couple: mean absolute error (MAE) and

mean squared error (MSE). The calculation of the loss function must be differen-

tiable. This is due to the optimization component of neural networks. The literature

is rich with publications regarding neural network optimizers, as well as the general

mechanics of neural nets ([1]; [14]).

Once neural network architecture and hyperparameters are chosen, training and

validation data is loaded into the network. While training the neural network, close

observation is made of the reduction in error between training input and output as the

neural network begins to optimize or learn. We also monitor the validation dataset at

each training iteration. The learning process stops once the training and validation

data has been passed through the network a certain number of times, or epochs.

When prototyping or pilot-testing the experiment set to be carried out, one should

test with a very short number of epochs and a larger sum of epochs to see where good

performance meets fast time of computation.

After training, the optimized neural network structure is intentionally frozen. Be-

fore the point of freezing, the neurons of the network can be adjusted for optimization,

like a student asking a teacher for advice when studying. The frozen state and infer-
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ence imposed upon it is like a student being prompted with a pop quiz and no teacher

assistance. This test or input data are similar enough to the training that the teacher

believes the student will have success in passing the test according to the selected

merit (mean squared error, the loss function). After the test, the performance of the

model is evaluated and a decision is made regarding next logical steps in the research.

A neural network can become biased to its training inputs. It starts to memo-

rize the training dataset, which does not make for a generally applicable algorithm.

Avoidance of biasing comes at the cost of variance ([9]). Applying dropout is one

technique to systematically prevent system bias by simply “turning off” a certain

percentage of random neurons at each iteration of the algorithm ([11]; [22]). Another

approach is the application of early stopping. The loss function of a neural network

typically looks like a very steep curve down to a flat bottom. Rather than allow the

network to persist in the flat bottom for long and become overfit, simple logic can be

employed to stop training early when the network shows evidence that it has reached

an optimal state. Percentage of data split between training and testing proportions is

another relevant training hyperparameter. A larger proportion of the dataset being

part of the training portion could lead to overfitting of the model and lack of gener-

alized predictability. On the other hand, insufficient training data might lead to an

inability to adequately characterize the reality of the data pairs.

The image sets subjected to treatment are on the large side computationally.

Holding many one million or nine million pixel images within the memory of a sin-

gle graphical processing unit becomes intolerable to the device. One could elect to

use multiple GPUs or a compute node with a great provision of memory. Here, we

constrain the experiment to a single GPU and cut the images up into smaller pieces

of square data. Our patch size is fixed at 100 x 100, though this is a tunable hy-

perparameter. Figure 2.7 shows a Pacific Ocean study region, highlighting Hawaii

and regions east. While this image is too large to process directly in the neural net-
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work, we can solve this problem by creating the eighteen patches of 100 x 100 pixels,

representing the 300 x 600 pixel region under observation.

Neural networks do not function when nan values are present in any of the images.

We enacted a broad treatment to the AMSR-E and MODIS images, computing the

mean of the entire image, excluding the nan values. Then, where the nan values are

present, we replace them with the mean value. This has the convenient byproduct of

introducing into the neural network many training pairs where the input and output

are simply comprised of the average global SST value as obtained via the AMSR-E

and MODIS instrument.

2.4 Results

We prepared the SST data for nine different cases all studying the year 2010: the

Atlantic, Pacific, and Indian Oceans segmented by monthly Day, Night, and Hybrid

(nb, hybrid means day and night images averaged together) observations of SST (nb,

first letters of the previous are bolded to call attention for their use in Figure 2.8).

We train the neural network on the first ten months of the year, validate with the

eleventh month, and test with the twelfth month. A training session runs for 100

epochs. Each image in the geographically constrained time series is 300 pixels x 600

pixels in size, divided up into eighteen 100 x 100 pixel segments to incrementally feed

the neural net.

In all instances, both training and validation loss functions drop by several orders,

indicating successful training without overparameterization as would be indicated by

low training error but high validation error. Performance of network as it relates to

the test data, December 2010, is seen in the upper plot of Figure 2.8. The goal is

for measurements labeled Pred or Optim to bring the RMSE value between AMSR-E

and Argo or MODIS down. Pred is the prediction directly from the neural network.

The Optim case takes the Pred and performs a band pass on the signal. If there are
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any measurements outside three standard deviations of the mean, they are replaced

with nan values instead. This is a device meant to combat some of the challenges

with coastal artifact.

In every case, the RMSE between the optim and MODIS is higher than the AMSR-

E input. In some instances, the test case of December does make an optim output

that is closer to Argo than the input AMSR-E. In some cases, though, it makes a

worse performing product with regards to Argo than either AMSR-E or MODIS. A

bright spot is that the optim output is closer to MODIS than the Argo product. See

Figures 2.9 and 2.10 for samples of how the RMSE translates to actual transformation

of the images.

2.5 Discussion

While the continual development of a relatively open extract, transform, and

load ([2]) system along with creation of the actual destination for the loaded data

(namely the neural network treatment and posttest analytics) is certainly a plus,

the results of this study request future engagement. In every case of this study, the

neural network appears to struggle with coastal regions. This is due to the nature of

the land sea boundary layer in all these datasets. At the presence of land, the raw

data (as they are downloaded as .nc files) are given a non-number (nan) designation.

Neural networks weren’t designed optimally for the currently produced segregated RS

datasets. The datasets appear to be manufactured with the understanding that one

group of people are still more interested in ocean behaviors, another land behavior.

For the purpose of training a neural network using the convolutional flavor, images

with no nans are needed. As referenced earlier, steps were taken during the training

process to circumvent the presence of land by substituting those pixels temporarily

with the local mean value. Another option is the application of the substitution of

the nan values with the mean as computed by the entire “scene” or day. There is the
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potential and a likelihood that the substitution of these values is introducing a source

of structured noise. This noise might be leading to the higher than preferable test

performance as denoted in Figure 2.8. Furthermore, it is probable that this structured

noise is hindering training of the neural network process itself.

As it relates to computer vision tasks such as this set of experiments, the use of

mean squared error as a loss function has been called into question as an appropriate

target ([23]). Their results certainly warrant some concern, and our experiments

have some corroboration with their findings. Our images are single channel inputs

and can be considered grayscale pictures. When displaying SST images, we use a

colormap based on what we know to be the physical limits of the parameter itself.

This is a different approach than typical of image based machine learning techniques.

Alternate loss functions to the standards baked into PyTorch are available ([12]).

These functions require the inputs to be either between 0 and 1 (grayscale) or 0 and

255 (color images). Another avenue is the pursuit of physics-based loss functions

([20]). While neural networks are a useful tool, they alone are not a silver bullet,

especially as it relates to geophysics. However, the neural network community has a

keen interest in computational efficiency.

We applied a land mask generated from the MODIS instrument. Aqua has far

surpassed its projected useful life span and was designed before the new millennium.

The new Surface Water Ocean Topography (SWOT) mission launched in 2023 ([7];

[17]). It will bring many new insights to the hydrology community. Among those

insights are a more precise global picture of Earth’s coastal regions.

Only a fraction of the available data was observed in this study. The ISAS Argo

dataset was a single file attached to a DOI address of over fifty gigabytes. We ex-

tracted simple the surface layer of this dataset. There is great value in consideration

of SST depth layers. Furthermore, we studied monthly time series images of all three

raw datasets. AMSR-E and MODIS each have near complete global pictures within
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two to three days. These datasets are then transformed in different ways and can

lose fidelity by various types of decimation such as regridding from swaths to squares,

uncertainty in formulas used for conversion from base input to high level (L2 - L4)

physical parameter, or by forms of compression.

Cloud cover is a persistent factor at play within the community. The question of

“is the measurement (pixel) currently observed impacted in an undetectable way?”

can’t fully go away, because even at the hyperlocal “nowcasting” time scale there

is missed detection of events. Because of the pervasive challenges, people need to

come together. Great global solutions require more cooperation, engagement, and

the act of building bridges with one another. Missions like the International Space

Station, Artemis, Landsat, and GRACE, and SWOT are only examples of what

global cooperation can result in. Here at the microscopic level of single parameter

consideration, we need more of the same type of teamwork. Dynamic collaboration

amongst many stakeholders raises economic efficiencies. Improvement of just a single

ECV requires takes the participation of a deep supply chain. Water is life. It connects

the global ecosystem in nearly every facet, from food supplies, health of exotic wild

animals, to the manufacturing of semiconductor chips and the treatment of industrial

water. A clearer perspective is always welcomed to help sustain life. The missions of

Aqua and Argo certainly achieved their planned missions in that way.

2.6 Conclusion

Sea surface temperature is an essential climate variable and crucial to understand

the movement of water throughout the hydrosphere. The beginning of the 21st cen-

tury marked a new frontier in the measurement of SST via the Aqua mission and Argo

program. We observed three overlapping datasets focused on measurements of sea

surface temperature: AMSR-E microwave measurements, MODIS infrared measure-

ments, and ISAS Argo float in situ measurements. We focus the study on three large
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oceanic regions: Indian, Pacific, and Atlantic. We used Flux to Flow, an extract,

transform, load, treat, and evaluation framework based around a deep convolutional

residual regressive neural network. We attempt to transform the coarser resolution

satellite product towards the finer one and intercompare all datasets. While the neu-

ral network performs well according to its typical loss functions, we find that the

presence of frequent nan values, the limitations of mean squared error as a loss func-

tion used in computer vision tasks, and the sheer size of output target quantities

compounded with high desired precision results in limited success when applying the

neural network transformation. However, we believe that a greater quantity of re-

sources focused on a smaller area per resource with this architecture might allow for

better capture of the relationship between AMSR-E and MODIS. More generally, we

see the future of this framework including other treatment algorithms, experiments

where fewer output target values are considered, or computing resources run in tan-

dem to build a bigger network for a potential better grasp on the transformation

process.
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2.7 Code Availability

Scripts are available at https://github.com/albertlarson/f2f sst
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2.9 Appendix

Figure 2.1: L2 AMSR-E SST field, March 3, 2004, no coordinate system

Figure 2.2: L2 AMSR-E SST, plotted with available coordinates and world map
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Figure 2.3: L3 AMSR-E file plotted without supplied coordinate system

Figure 2.4: L3 AMSR-E file plotted with available coordinates and world map
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Figure 2.5: L3 daily MODIS file containing only high quality flagged pixels

Figure 2.6: Monthly L3 MODIS image containing only high quality observations
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Figure 2.7: Sample training monthly observation; January 2010 MODIS day obser-
vation of the Hawaiian Islands; segmented into 100 x 100 pixel regions.
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Figure 2.8: December 2010. The top panel shows the distances from Argo and MODIS
to predicted, optimized prediction, AMSR-E and each other for all nine experiments.
Two bottom panels are plots of training and validation losses during neural network
training.
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Figure 2.9: Relatively “good” perceptual change, Pacific Night case

Figure 2.10: Relatively “poor” perceptual change, Indian Day case
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3.1 Abstract

Water continuously cycles throughout the land, ocean, and atmosphere. Ac-

cordingly, it is important for hydrological analyses to consider water as it moves

throughout the entire hydrosphere, and not just a single facet of the process. We

use neural networks as a device to transform geospatial observations of water quan-

tity and quality into forecasts of ground truth streamflow measurements. Two very

large transboundary basins, the Columbia River and Yukon River, are subjects of

this investigation. We first describe the basins. Then we create two datasets for each

basin: one with coupled surface flow, subsurface flow, and sea surface temperature of

the basin adjacent oceans; and another with simply the surface and subsurface flow

land measurements constrained to the definitive boundaries of the delineated water-

shed. Finally, we load these datasets into Flux to Flow (F2F), our neural network

test platform. Our results indicate that, even with the smallest neural network we

try (four neurons only), use of sea surface temperature greatly improves forecasting

of monthly streamflow from up to two years lag between the input images and the

output gauged streamflow measurements. We see the future use of the F2F pattern

having more output targets and likely requiring multiple compute nodes to scale the

work. We discuss and identify drought monitoring as a suitable next step. We believe

this work has only scratched the surface regarding the integration of land and ocean

parameter datasets to fields devoid of non-numerical observations.

3.2 Keywords

water, water quantity, streamflow, sea surface temperature, GLDAS, MODIS,

Columbia River, Yukon River, z-score, Nash Sutcliffe efficiency, neural networks
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3.3 Introduction

Depending on the location, there are different water related signals that humans

can witness and measure. These time variant water signals include but are not limited

to parameters such as rainfall, snowfall, cloud cover, fog, ice, soil moisture, streamflow,

river height, body of water temperature (lakes, seas, ponds, oceans), tidal timing and

intensity, waterbody color, turbidity, and trace chemical concentrations in the water.

These variables are commonly cloistered into variables of the land, variables of the

atmosphere, and finally but certainly not least important variables of the ocean.

Together they form the hydrosphere. We focus on variables of the land and variables

of the ocean; however, we affirm the impact of the atmosphere upon land and ocean.

Even at long time scales, there are certain parts of the globe that are constantly

obscured from viewing with traditional bands of the electromagnetic spectrum due to

noise such as clouds, wind, or other interference. This fact places an emphasis on the

need for continuation of innovation in satellite measurements, ground sensors, and

the spectrum of devices in between. The state of the science is still in many instances

‘flying blind’; Earth’s environment is dynamic and complex and modern solutions

need to grow to combat modern problems.

We consider two extra-large basins. As an added complexity, we target trans-

boundary watersheds. The motivation behind the use of transboundary watersheds

is to simulate differences or nuance when leaving the gates of our national data sys-

tems in the acquisition of gauged river discharge measurements. In this instance,

our journey is a short one to the northern riparian of the United States: Canada.

Our view considers seventeen years of data, spanning years at monthly snapshots as

opposed to the shorter end of the time spectrum (seconds, minutes, hours, days, or

weeks). The two basins selected herein (Yukon River, Columbia River) are unique

because of, among other features, their: 1, far from equatorial latitude; 2, proximity

to the integration of land and ocean; 3, great range in quantity of water infrastructure
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between the two habitats; 4, large range of elevation change.

We study surface and subsurface flow as computed for one of the GLDAS datasets.

Additionally, we couple the two GLDAS datasets to MODIS sea surface temperature,

creating a global dataset mostly devoid of non-number pixels. Of interest is the pre-

dictability of several gauges at a time when using the clipped version of GLDAS versus

our custom ocean-enabled version of GLDAS. Furthermore, we modulate the lever of

z-scored datasets versus non-z-scored datasets. We find that combining surface flow

with subsurface flow (derived measurements of the changing weight of water in a re-

gion) and sea surface temperature has a markedly improved performance in predicting

gauged streamflow than the datasets containing only surface and subsurface flow.

The wide lens guiding motivation behind this study is three-fold: 1, to improve

the reader’s understanding and capability to ‘quickly’ visualize the pertinent available

macroscopic modern water cycle monitoring data sets; 2, to highlight state of the

science level data typically used by experts for the generation and interpretation

of global policy targeted outputs; and 3, to present a narrative of water (hydrology,

limnology, oceanography) as the focal point of study because of its status as a primary

building block of life.

3.4 Materials & Methods

3.4.1 Yukon River Watershed

The Yukon River and greater watershed are situated within part of the state

of Alaska, and the eponymously named Canadian territory known simply as Yukon

(Figure 3.1). A thorough baseline hydrological artefact of the Yukon River exists ([6]).

The headwaters of the Yukon River emerge from the constellation of finger style lakes

(e.g., Atlin Lake, Marsh Lake, Teslin Lake, Gladys Lake) known customarily as the

Southern Lakes region along the northwestern border of the Canadian province of

British Columbia. Sampled along the route of the river, one is likely to find bedrock,
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confined and unconfined aquifers, a host of unique soil profiles, vegetation, permafrost,

and a not to be understated flurry of flora and fauna friendly to subarctic climatology.

At a microscopic, chemical level, the frequent boreal forest attributes concurrent with

the frigid temperatures are well understood ([40]). Zooming out to a wider view than

just the Yukon, evidence continuously mounts regarding the impacts of the changing

climate. As goes the rest of the world, the Yukon feels an impulse. Nitrogen and

phosphorous pollution are two of the more notorious organic chemical components

that when unmanaged can wreak havoc on a watershed, causing eutrophication, loss

of biodiversity ([7]). It’s a short walk down the primrose path to a river lacking in a

once endemic species of fish ([27]).

The Yukon River is famous for its salmon. In the last several years, the Yukon

has come under public scrutiny for declining populations of chinook and chum in the

Yukon and its neighbor river the Kuskokwim. A combination of bycatch in pollack

fisheries, overfishing, marine heatwaves and algae blooms are causing the environment

to become potentially less suitable for fish. There are prevalent modern terrors such as

“forever chemicals” and the ubiquity of microplastics in the hydrosphere to the degree

that many careers are being dedicated to the study as it relates to contamination of

our waterways ([45]). It is a wonder at all sometimes that our river ways can sustain

any life given the way some humans steward the gift. Humanity has much work to

do to repair and improve the current status quo.

Environmental flows, or “e-flows” is “the quantity, timing, and quality of water

flows required to sustain freshwater and estuarine ecosystems and the human liveli-

hoods and wellbeing that depend on these ecosystems” ([3]). Considering a perspec-

tive filtered through the comprehension of e-flows, the Yukon has natural advantages.

It is in a higher latitude, close to the North Pole (there’s a town called North Pole

in Alaska along the Yukon). Because of the high latitudes, constantly cold (equatori-

ally relative) temperatures, and sometimes very long dark periods of time, there’s a
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tendency for life forms to shirk away from this environment. As such, the river is less

prone to farming, heavy nutrient loading, or industry strain. That is not to say that

its observation is in vain or without merit, far from it. Large swaths of previously

unoccupied or lightly occupied land are important ones to observe with greater clarity

the forcings and results of the natural global Earth phenomena as it is subjected to

human intervention.

Physically, the Yukon River and surrounding land has all the features one desires

in a naturally occurring surface water: beautiful lakes, high mountain scenery, sin-

uous meanders, novel woodland creatures. For example, erosion drives the creation

of oxbow lakes, small slices of river cut off after anomalous water patterns drive un-

usual erosion in a suitable soil substrate. The Yukon is home to many cyclically

migrating birds, as well as a habitat for many bears ([35]). Bears are attracted to the

Yukon’s most notorious creatures: the chinook and chum populations traversing the

watercourse.

3.4.2 Columbia River Watershed

South of the Yukon Basin, at the southern edge of British Columbia and the

boundary between the contiguous US and Canada lies the beginning of the Columbia

River (Figure 3.1). The watershed is split into two major parts by the Cascade

Mountain range running northerly from Oregon up into British Columbia. Land

wise, the basin is primarily east of the Cascades. The western half of the larger

Columbia drainage basin as divided by the Cascades finds a large share of water in

the flows of the Willamette River. The waters of the Willamette stem from Waldo

Lake, and it moves in a northerly direction before merging with the formal Columbia

River. The Willamette unfortunately came under great scrutiny for the exhaustion

of its goodwill to the point of receiving the designation of one of the United States

most polluted waterways ([34]). There are efforts to restore the waterway that have
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logged twenty-five active years and are beginning to restore these damaged arteries

and veins of water.

The Willamette meets the Columbia in Portland, Oregon, and there is a short

portion that flows north and west into the Pacific Ocean, catching a view of Mount

Saint Helens to the east as the Columbia traces the boundary between the states of

Oregon and Washington. Prior to Portland, the Columbia has a long meandering

path through Washington and the Canadian province of British Columbia. Moving

against the current, one follows the river in an easterly direction until coming upon the

Tri-Cities in Washington. Kennewick, Pasco, and Richland are the three towns at the

confluence of the Columbia and the other two of its other major tributaries (Snake

River and Yakima River). All proverbial roads of the Columbia move upwards in

elevation, and the coherence of a singular river eventually dissipates. Where Yakima

for example weaves back into the Cascade Range, there are many finger lakes serving

as the upper riparian.

Snake River is the largest tributary of the Columbia, its starting line in Wyoming

trekking a westward course just north of Bear River. The Snake River’s headwaters

are outflows of Yellowstone. The Columbia River and Snake River share a potentially

overlooked but crucial feature from their convergence backwards: a vector of hydraulic

projects along both of their paths, none more notable than the Grand Coulee Dam

(GCD). GCD is a hydroelectric power generating dam, with a power generating ca-

pacity of 6,809 megawatts (MW)). GCD is the largest power station (not just hydro,

but of any type) in the United States. Though, it is dwarfed in size to the Chinese

Three Gorges Dam, which boasts an installed capacity of 22,500 MW.

The eponymous Columbia ultimately has its headwaters in British Columbia

where it forms from a series of three finger lakes: the smaller Slocan Lake and the

protracted-in-length Upper Arrow Lake and Kootenay Lake. The three direct sup-

pliers of water are amongst the Columbia Range of mountains. Furthering the point,
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there is also a Mount Columbia in the range.

3.4.3 Data Sources

This study compiles together several large portions of data from five different

institutions. NASA provides the two land variables, surface and subsurface flow.

These variables are derived by integrating several meteorological forcings into the

Noah water balance algorithm. The Noah land surface model has a rich history

dating back to the late 1980s with formal named implementations released in the

middle 1990s ([11]). Surface and subsurface flow are produced measurements of unit

kilograms per square meter and represent the spatial weight of water at a given time in

each location ([52]). Noah factors known soil properties, solar radiation, precipitation,

wind, pressure, humidity, and changes in the purses of snowpack (if applicable to the

region).

The sea surface temperature product used is one of the monthly outputs from the

MODIS instrument on the Aqua satellite. In this instance, the thermal longer wave

infrared band observed by MODIS is selected ([37]). Furthermore, we use the data

product that only looks at nighttime passes of the MODIS sensor. Daytime passes

captured are ignored because of the potential diurnal warming effect that manifest

in daytime observations. The skin of the ocean can become surficially inflated. Our

preference is to a measurement of the ocean closer to the signature of the depths

of the waters rather than the strength of the sun on a given day. Solar radiation

is already encompassed in the calculation of land flows, so we attempt to limit its

impact.

Gauged streamflow for both basins are obtained through the United States Geo-

logical Survey and Canada’s bureau of climate and the environment ([47]; [10]). In

all instances, we constrained ourselves to near continuous basin measurements over

the entirety of the time series. The requirement of continuity (no non-number pixels
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and preferably no interpolation between months) plays a part in the quantity of mea-

surements per basin. The study length is 210 single month measurements, beginning

with July 2002 (coinciding with the first available monthly measurement of MODIS)

and ending with December 2019. Measurements of actual streamflow in cubic feet

per second for each basin are provided in the Figure 3.2.

3.4.4 Preprocessing

We run two distinct workflows across the time series for the Columbia and the

Yukon basin. Motivated by a desire to understand whether the coupling of monthly

SST to the GLDAS measurements of water flux across land impacts the speed and

ability of the neural networks to learn algorithms connecting the inputs and outputs

(i/o), we create datasets that are comprised just of surface and subsurface flow, and

those that combine time aligned SST with the surface and subsurface flow measure-

ments.

The process of combining land and surface measurements is illustrated in Figure

3.3. In the top row, we have one measurement of surface (Qs) and subsurface (Qsb)

flow. In the second row first column, we have added those two measurements together

pixelwise. In the second column, second row, the combined Qs and Qsb are integrated

with the corresponding monthly measurement of SST. In row two column two, having

the single colormap representing all numbers provided causes a “washed out” effect

where the Qs and Qsb measurements disappear because their physical range here are

roughly between 0.0 and 1.0 kilograms per meter squared, as opposed to the wider

0.0 to 20.0°C range. Concurrently, row three captures the dynamic ranges of water

flux over land, and the temperature of the ocean’s surface temperature.

In their respective raw formats, the land and ocean variables have different reso-

lutions and different grids for each pixel of data. This fact makes assimilation of the

data in its raw state impossible. The fix for this problem is bilinear regridding. We
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retain the MODIS grid and resolution of approximately 9 km x 9 km per pixel. To

facilitate regridding, we utilize xESMF, a high level python package hooked into the

Fortran, C, and C++ based Earth System Modeling Framework ([55]). We input the

source image (Qs and Qsb), the destination grid (SST), and the type of regridding

(bilinear). The algorithm provides as an output our source image in the destination

grid.

We also use a windowing technique to eliminate nan values from the MODIS SST

images. The PyTorch software suite has the function to create tiles of uniform smaller

images from a large input ([42]). We unfold each MODIS raster into smaller non-

overlapping squares. Within each tile, we set the software to find any non-number

values and replace them with the average of the available numerical values in the tile.

One could simply take the mean of the entire global image and replace non-number

values that way; however, this is prone to the creation of unusual bias due to the wide

variance of sea surface temperature based on location of observation. By using this

tile method, we limit potential bias through the consideration of pixels only that are

in relative proximity to each other. After gap filling, we fold the tiles back up into

the original image size.

Our control preprocessing in the study follows the same chain found in the first

iteration of Flux to Flow. We clip the measurements of Qs and Qsb to the geographical

constraints captured in the publicly available shapefiles for each basin. To do this,

we involve a few different publicly available software packages. We open the shapefile

(a digital vector storage format) with GeoPandas ([26]), convert the vector file to

a GeoJSON file with shapely, and clip each measurement of surface and subsurface

flow with rasterio ([18]) and xarray ([23]). As opposed to the coupled land and ocean

images, we do not add the measurements of surface and subsurface flow together. We

fill any non-number values with the mean of the available measurements.
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3.4.5 Treatments

To investigate the capabilities and limitations of neural networks as they pertain

to the calibration and prediction of streamflow from land and surface measurements

of water, we run 1,920 experiments total, 960 for each basin. The 960 experiments

are spread amongst five neural network configurations of increasing complexity. Of

the 192 configurations per neural net, we run experiments splitting the datasets into

training data and test data splits of 70% / 30%, 80% / 20%, 90% / 10%, and 95%

/ 5%. The more data that is in the training set, the higher likelihood of better

performance in the testing regime. We have six different lag profiles (zero lag, one

month lag, three month or “one season” lag, six month or “two season” lag, one

year lag, and two years lag). We test between z-scoring and not z-scoring the input

channels. Lastly, we have an option whether to shuffle or not shuffle the training

data. Shuffling data is known empirically to improve statistical learning ([33]).

Four of five neural networks have a single hidden layer. Single hidden layer neural

networks, with enough neurons in the hidden layer, are theorized to be capable of

universal function approximation ([22]). Concurrently, we evaluate the feasibility of

using a single hidden layer of differing sizes (4 neurons, 30 neurons, 200 neurons, and

1,000 neurons) to approximate the transformation algorithm between location spe-

cific water flux to flow measurements. To facilitate these networks, we reshape each

input raster of shape height times width into a vector of one by (height times width).

The vector passes through the hidden layer, receives signal conditioning via rectified

linear units (ReLU), and outputs six or seven (based on the basin under observa-

tion) predictions for each of the streamflow gauges. Based on the difference between

the predictions of streamflow output by the model and the actual measurements of

streamflow according to the mean squared error loss function, backpropagation and

adjustments of the neurons of the network are made using the Adam optimizer ([30]).

Regardless of the neural network architecture, the learning process (forward propaga-
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tion, the calculation of loss, backpropagation and updating of weights) is performed

100 times (otherwise known as 100 epochs) across the training dataset. Model testing

simply makes a single pass through the unseen testing data (the most recent in time

data, quantity dictated by the lag of the test case and the percentage of data devoted

to testing).

The fifth and most complex network is a convolutional structure loosely based on a

modern image classification architecture ([20]). Each of our input channels are forced

into a convolutional space (sometimes referred to as the latent space) where the input

images are considered in many dimensions by the machine. This function allows for

automatic feature learning by the machine of potentially important structural details

or patterns unique to the SST fields. To hedge against the potential for the machine

to miss the mark, this latent space learning is containerized, added to the input that

was used to feed latent space learning, and then fed into a conventional neural network

structure that bottlenecks down the input images to 100 neurons, fifty neurons, twenty

neurons, ten neurons, and finally the output size of either six or seven neurons. In

contrast to the image classification network, our structure has a regressive target

output. A regressive target output simply imputes that the value of streamflow can

be any continuous value (within reason) greater than zero.

3.5 Results & Discussion

The 1,920 experiments were split into their respective basins, the Columbia and

Yukon. Each set of 960 experiments ran on their own node comprised of at least one

NVIDIA GeForce RTX 2080 Ti GPU and 64 GB of CPU RAM. Due to its slightly

larger per image pixel size (200 x 800 for the SST enabled, 38 x 143 for Qs and

Qsb only), the Yukon test set ran for approximately twenty eight hours while the

Columbia basin (200 x 600 for SST enabled, 46 x 57 for Qs and Qsb only) tests lasted

only 21.5 hours.
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In developing the test set of experiments, we again encountered the implications

of the “washed out” effect as seen in the preprocessing portion of this document.

Upon feeding the single channel hybrid ocean temperature and land flux images into a

standard z-score treatment of our network, we found that regardless of the complexity

of the network and with no lag of the data, performance was very poor. A z-score

is computed by mean centering the data under observation (0.0 = mean of the data)

and dividing by the standard deviation (z-scores between -1.0 and 1.0 are all of those

within one standard deviation away from the mean). The values of Qs and Qsb have

a relatively small range to that of SST. Therefore, the dynamics of the Qs and Qsb

were overshadowed by the larger range of measured SST values. One can’t simply

mix two physical parameters and then compute a z-score. They have two different

dynamic ranges. Dynamic range is the general placement of a collection of values

on the number scale, as well as and possibly more importantly the distance between

their largest and smallest observed value. Our fix consisted of going back to the

preprocessing step, computing the z-scores for SST and Qs + Qsb individually, and

then and only then merging them into a single time series image for each month.

In Figure 3.4 we present aggregate results of the testing data ran through their

respective trained models. Ignoring all the other parameters (lag, quantities of train-

ing and test data, use or abstention from the use of z-scoring, shuffled or non-shuffled

data), there is an evident distinction. The use of SST coupled with Qs and Qsb

changes the performance of neural network streamflow prediction. Nash Sutcliffe ef-

ficiency, or NSE, is a metric frequently used to evaluate hydrological modeling efforts

([38]). A negative or near zero value implies a poor model prediction, whereas a value

close to 1.0 indicates a strong penchant to accurately predict the actual streamflow.

Calculations of NSE herein only consider testing data, not training data. To be clear,

let’s consider an imaginary example of a different time scale. A time series of 100

days in a row split into an 80% / 20% train test split means that the model (here the
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neural network) learns an algorithm from the first eighty days and then makes infer-

ences about the latter twenty days. Factoring in the training data when computing

NSE would give NSE a positive boost, but it wouldn’t necessarily be considered fair

or unbiased. One can make a very large neural network that simply memorizes the

input data, which would give the impression of perfect performance. This is fine if

that was the desired task. As a baseline or “mic check” of your system, it is a rea-

sonable device; however, it would likely have little to no practical application beyond

getting the metrology for your experiment dialed in. Therefore, we only consider test

data.

In Figures 3.5 and 3.6, we disaggregate the results from Figure 3.4 into their re-

spective individual neural network configuration. In the instance of the Columbia,

for both non-SST and SST experiments, as the complexity of the neural network

increases, the performance of the network with regards to the unseen test data mea-

sured by NSE increases. With SST present, performance climbs faster. In column

three of Figure 3.5, the single hidden layer network comprised of 200 neurons, the

non-SST experiments have a centered NSE value around -1.0, whereas the SST ex-

periments caused a jump to a range between 0.35 and 0.90. The value of SST is

even more opaque in the Yukon experiments. In Figure 3.6, the data shows that

the simple change from four to thirty neurons combined with the SST-enabled data

gives results of model predictability well over 0.0. The non-SST datasets don’t see

this performance until dcrrnn (pronounced discern and the shorthand name for our

fine-tuned deep neural network) enters the proverbial training arena.

In Figures 3.7 and 3.8, we shed the non-SST experiments and smaller single hidden

layer configurations; instead, we just focus on experiments with SST and one of

two neural net architectures (dcrrnn or the 1,000 neuron single hidden layer neural

network). Specifically, we filter and plot two small datasets: 1, a disaggregation of the

remaining experiments per basin based on lag between input and output data; and 2,
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a disaggregation based on the Boolean variable of z-scored inputs versus non-z-scored

inputs.

Both figures indicate the same reality as in the original F2F document. Civil

infrastructure creates its own set of nuance and challenges to the modeling realm.

The Yukon River is a more continuously wild place. Handling the two different sets

of signal chains is like handling the sound profile of a strictly raw acoustic guitar

signal versus handling an electric guitar buried underneath a dozen different pedal

effects. Though the acoustic player has bends, twists, turns, and hopefully nuance

to their playing with time, there is a more finite (yet relatively natural) sonic realm

emoting from the acoustic player’s hands. The same might be said for the Yukon in

its current state, and there is a certain beauty about the natural movements of water

and sediment in an unconstrained basin such as the Yukon. It may experience times

of drought or flood, but there is not yet any fashioned mass of concrete capable of

holding back very high (relative to the baseflow of the river) quantities of the Yukon

waters for long periods of time, and consequentially the hydrograph has little artificial

complexity.

The same cannot be said for the Columbia River. Since greater control of

Columbia’s flows sit with single-point sources, and these are manmade devices, opti-

mized performance of F2F in a basin such as the Columbia River basin would benefit

from much more data at the inlet and outlet of each point source. A next step might

be just considering a single basin (or single State) and accumulating all available hy-

draulic data. The EPA has its Enforcement and Compliance History Online (ECHO)

data available as a representational state transfer (REST) software architecture. In

another run of the land data assimilation system (i.e., a hypothetical NLDAS 3 or

GLDAS 3), it would be of value to see the impacts of programmatically including

a few hundred or thousand continuous point-source or ground truth measurement

sources. Certainly, calibration of this many outputs would require either: 1, much
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compute time on a single graphics processing unit; or 2, and probably more likely,

the use of many GPUs in tandem.

Reference is made in the Materials & Methods to a preference of input images of

the ocean associated with the deeper depths of the waters rather than the strength

of the Sun on a given day. Our study certainly is self-limited in the depth field. The

ocean at places is very, very deep. Soil has geospatial delicacies; the vadose zone

is where science is witnessing the fallout from humanity’s continued mishandling

of chemicals. These facets beget their own studies, which is outside the scope of

this investigation. We acknowledge that although this study shows promising results

regarding the use of advanced neural network technology in the forecasting of monthly

streamflow out to a lag of two years, true temper of the devices will only come through

testing other datasets, time scales, and locations.

Another water-focused avenue we see F2F moving towards is drought propaga-

tion. Historically, humanity’s records of drought monitoring are very good, due in

part to various backwards looking methodologies. For example, a gridded, spatially

interpolated dataset observing the standardized precipitation index (SPI) dating back

to 1895 is available ([50]). The U.S. drought monitor time series dates to 2000 ([48]).

There is even one digital product measuring the Palmer modified drought index at a

0.5 / 5x5 (degree / square kilometers) resolution dating back to the beginning of the

common era, 0 CE, over 2000 years ago ([17]). Future work might take a backwards

looking glance through the lens of Flux to Flow. There is potential wisdom to be

gleaned from the assimilation of prior discharge information for the sake of better

initialization of prediction. This work can take advantage of the ability to break up

datasets into smaller pieces and load them onto concurrent graphical processing units.

Should one consider the cost and deem it a suitable operational tool, the simplifica-

tion within Flux to Flow in folding and unfolding of geospatial tensors will serve as

a potential balm to data handling challenges.
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Drought is intimately linked to water scarcity, and this topic has never been more

relevant. Water scarcity represents one of three things: 1 – the condition where

no drinking water infrastructure exists; 2 – the condition where the drinking water

infrastructure is inhumane; and 3 – the condition where available water resources are

used unsustainably over a long period of time. In the modern scientific community,

drought is science based, whereas water scarcity is rooted in policy, management,

and justice as it relates to the global state of water infrastructure ([49]). These

differences notwithstanding, drought and water scarcity are symbiotic in their nature.

The destruction of natural ecosystems catalyzes further drought conditions ([16]). As

the dynamics of the global climate change Earth’s structure at the air, land, and

oceanic interfaces, the occurrence and severity of drought conditions are becoming in

some cases greatly exacerbated ([29]; [39]). Therefore, it is necessary to understand

the propagation of drought in time as it starts in its most benign state, and how it

can take a turn for the worse and become an extreme event.

There are more than fifty different indices related to drought. The National

Drought Mitigation Center (NDMC) highlights five digitally, and six in the origi-

nal software system companion paper ([48]). In all of them, keeping everything else

equal, a decline in value equilibrates to a worsening drought condition. A simple

model given these eight channels of data could be constructed by averaging the out-

puts at a given location and time, followed by a whitening technique such as z-scoring

and segmentation of the result into bins yielding a single image representation. The

timescale of the ‘percent of normal’ statistic changes in response to certain drought

condition steps (e.g., from extreme to exceptional drought, the consideration of the

condition switches from degree of specialness over a six month period to specialness

over a twelve month period). Consideration of prior observations with thoughtful

control of influence decay of said observation over time falls under the umbrella of

drought propagation concerns. There are other open source software repositories
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that have already replicated many of the formal algorithms. One such algorithm of

note is the Penman-Monteith equation of reference evapotranspiration (ETo). This

algorithm was standardized by the American Society of Civil Engineers after bench-

marking against a panel of twenty indices for reference evapotranspiration ([1]; [44]).

Drought propagation studies look at the teleconnections between meteorological,

agricultural, hydrological, and socioeconomic drought. Many studies are classified

under the drought propagation umbrella, such as those of historical nature that mon-

itor oceanic phenomena like the El Niño Southern Oscillation ([43]; [4]), or the use

of global greening strategies as a mitigation effort ([41]; [14]). Studies of drought

propagation cover the entire globe, from China ([19]; [24]; [54]) to South America

([4]; [5]; [9]), Central Asia ([21]), Africa ([12]; [51]; [15]) and the United States ([2]).

Figure 3.9 presents a sample output from the National Drought Mitigation Cen-

ter. Their output has six seven different color based classification codes available

to diagnose a region. Attempting the application of Flux to Flow to generate these

images using the hybrid fields would only be a slight departure from the current body

of experiments. Having such a finite quantity of outputs means that the loss func-

tion needn’t be of the regressive variety but could take advantage of one of the many

classification-based loss functions ([25]), or potentially of the burgeoning transformer-

based modeling domain ([28]).

This experiment has several components that distinguish itself: 1, use of optimized

computing performance and efficiency; 2, knowledge and selectivity amongst the rich-

ness of the geospatial data landscape; 3, consideration at several orders of magnitude

of neural network complexity; 4, the openness of the technology; 5, consideration of

many experiment samples to root out bias; and 7, use primarily of a collaborative

green computing facility. The driving research questions behind this set of exper-

iments were: 1, what impact does the application of sea surface temperature have

upon the prediction of streamflow of large watershed basins; 2, how many overlap-
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ping, continuous, monthly measurements of gauged streamflow in two transboundary

basins can we easily obtain, and what are the characteristics of these measurements;

3, how does Flux to Flow perform when using monthly datasets and greater than one

but less than ten output targets? We find that sea surface temperature does have

a positive impact upon neural network model predictability of streamflow. Each of

these large basins was limited to less than ten. The measurements of discharge vary,

indicating a wide dynamic range in the study of these basins. This is expected, as

a backyard with a brook is never far away, and wisely planned cities are commonly

built around plentiful coiffeurs of surface water resources.

In the future, we may consider different ground truth data sources, particularly

the EPA ECHO repository. We also see modern and future satellite missions on the

horizon. Of note is the ECOSTRESS satellite and its signature evaporative stress

index (ESI) product ([8]; [13]). Following on the success of NASA’s ECOSTRESS

is a planned joint initiative between the Indian Space Research Organization and

the French Space Agency, known as Thermal infraRed Imaging Satellite for High-

resolution Natural resource Assessment or ‘TRISHNA’, and the Copernicus Land

Surface Temperature Monitoring (LSTM) mission ([32]; [31]). Both are targeting

the latter half of the 2020s for mission launch and will improve the temporospatial

coverage of a similar product to ECOSTRESS, which has a resolution of seventy

meters by 70 m x 70 m per pixel. This is more than 10,000 times finer resolution

than the monthly MODIS product used within that has a pixel resolution of 9 km

x 9 km per pixel. However, MODIS has a much more frequent revisit time, seeing

the same location multiple times before ECOSTRESS does. This fact is part of the

motivation behind such follow on missions. In order to study changes of the planet

during the day at very fine resolutions from satellites that are orbiting around Earth,

we will need multiples. This practice of redundancy has been already put to work

in several satellite missions, such as the two MODIS instruments on the Aqua and
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Terra satellite platforms, the multiple GOES, Sentinel, Landsat, GRACE, and VIIRS

missions.

We lastly see the potential for the integration of equations such as those used

in the companion papers to NLDAS’s streamflow, the Saint-Venant equations ([53];

[46]). Physics-based machine learning is a field of its own. While we are pleased with

the use of the convolutional, image focused networks, we see the benefits of more

closely knitting historical hydrological advances into the bones of the neural network

and think it could help move all experiments to the highest echelon of performance

according to NSE ([36]).

3.6 Conclusion

Herein, we investigated the use of neural network architectures and how they can

be applied to river flow forecasting of two transboundary watersheds. Our inputs

to the networks were derived fields of meteorologically forced surface and subsurface

flow, and gauged streamflow data obtained from United States and Canadian bureaus

associated with hydrological monitoring. Flow fields only show observations for the

land, which can create issues and cause limitations to the quality of neural net model

generation and performance outcomes. In response, we also fused time-concomitant

sea surface temperature fields to the GLDAS observations of flow, finding a marked

difference in the prediction of streamflow. To bolster this study, we considered two

different basins of vastly different human imprints and found a clear watermark when

the basin is sufficiently artificially modified. We see a continuation of this work by

locals to other nations using their continuous gauged streamflow data, the fusion

of higher resolution datasets, translation for use as a drought monitoring prediction

system, or potential scaling of the system to consider many more streamflow sensors.

This study is focused on basins that are relatively high in latitude, and there is

certainly nuance in other locations that our modeling did not capture here. Selecting
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an equatorial location might produce different nuance. One potential suitor is Hawaii,

which would be an opportunity to use requisite higher resolution datasets because

of its relatively small size. Hawaii is unique because of the different climates like

those on the leeward and windward side of Oahu. It is also favorable because of the

relative ease with which continuous data can be secured. This future study might also

mark partnerships with an equatorial international institution to obtain continuous

streamflow measurements from their waters as a way to formally pollinate this work.
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3.7 Code Availability

Scripts are available at https://github.com/albertlarson/f2f holistic
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3.9 Appendix

Figure 3.1: Extents of the Yukon and Columbia River watersheds and gauge locations.
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Figure 3.2: Hydrographs of all gauged streamflow data. Second and fourth plots are
zoomed in versions of the same colors in the first and third plots. Both have low
discharges whose details are lost amongst the larger portions of the river.
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Figure 3.3: Sample observation of surface flow (Qs), subsurface or groundwater flow
(Qsb), Qs + Qsb, flows merged with SST but represented with a single colormap,
and flows merged with SST represented with two colormaps highlighting each physical
parameter’s unique dynamic range.
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Figure 3.4: Histograms of model predictability across all experiments delineated by
whether SST is included as part of the input or not.
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Figure 3.5: Histograms of test results for Columbia experiments deconstructed by
neural network architecture at the time of training.

Figure 3.6: Histograms of test results for Yukon experiments deconstructed by neural
network architecture at the time of training.
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Figure 3.7: Columbia & Yukon experiments using dcrrnn and the 1,000 neuron single
hidden layer neural networks, disaggregated by lag.
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Figure 3.8: Columbia & Yukon experiments using dcrrnn and the 1,000 neuron single
hidden layer neural networks, disaggregated by z-scored vs. non-z-scored.
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Figure 3.9: National Drought Mitigation Center Weekly Output, March 2, 2023,
Drought Monitor Output.
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