Albert Larson

Education & Professional Experience

2023 – Present	Adjunct Faculty, Community College of Rhode Island, Warwick, RI
2024 – 2025	Postdoc, Brown University, Providence, RI
2023 – 2024	Postdoc, University of California, Irvine, CA
2019 – 2023	PhD, Civil and Environmental Engineering, University of Rhode Island (URI)

Dissertation Title

Flux to Flow: A Clearer View of Earth's Water Cycle via Neural Networks and Satellite Data

Program of Study

Water in the Environment, Waterborne Diseases, Programming for Scientists, Neural Networks and Deep Learning, Geospatial Watershed Modeling, GIS Analysis of Environmental Data, Remote Sensing and Natural Resource Mapping Awards

2023, 36th Rhode Island Transportation Forum, best dissertation

2019 – 2020 MBA, Department of Business Administration, URI

Program of Study

Statistical Methods for Management, Organizational Behavior, Legal Environment of Business, Organizational Decision Making and Design, Consulting and Management Practice, Principles of Economics, Operations and Supply Chain Management, Management Data Analysis and Communication, Global Supply Chain Management, Global Warehousing and Distribution Systems, Strategic Management

2016 – 2018	Territory Manager, Wescor Associates, Wrentham, MA
2015	Assistant Project Manager, Golden Rule Designs, West Kingston, RI
2014	Sales Engineer, Zoll Medical, Chelmsford, MA
2012 – 2013	Sales Engineer, Dewesoft, Whitehouse, OH
2011 – 2012	Sales Engineer, Dewetron, Wakefield, RI
2010 – 2011	Application Engineer, Yushin, Cranston, RI
2019 – 2010	Technical Support Engineer, Grass Technologies, West Warwick, RI
2005 – 2009	BS, Mechanical Engineering, URI

Teaching Experience

CCRI, ENGR 1020, Introduction to Engineering and Technology

CCRI, OCEN 1010/1030, Introduction to Oceanography

URI, CVE 370, teaching assistant, hydraulics

URI, Metcalf Institute, flood monitoring science coach

URI, Google exploreCSR, workshop coach

URI, CVE 475, guest lectured topic of water scarcity

Fall 2024, Spring 2023

Spring 2023

Summer 2022

Spring 2021

Fall 2021

URI, CVE 374, teaching assistant, environmental engineering

Publications

1. **Larson, A.**, 2022. A clearer view of Earth's water cycle via neural networks and satellite data. *Nature Reviews Earth & Environment*. https://doi.org/10.1038/s43017-022-00303-x

Fall 2020

- 2. Murray, C., **Larson, A.**, Goodwill, J., Wang, Y., Cardace, D., & Akanda, A. S., 2022. Water Quality Observations from Space: A Review of Critical Issues and Challenges. *MDPI Environments*, 9(10), 125. https://doi.org/10.3390/environments9100125
- 3. **Larson, A.**, Hendawi, A., Boving, T., Pradhanang, S., & Akanda, A., 2023. Discerning Watershed Response to Hydroclimatic Extremes with a Deep Convolutional Residual Regressive Neural Network. *MDPI Hydrology*, 10, 116. https://doi.org/10.3390/hydrology10060116
- 4. **Larson, A.** and Akanda, A., 2023. Transforming Observations of Ocean Temperature with a Deep Convolutional Residual Regressive Neural Network. *arXiv preprint arXiv:2306.09987*, https://doi.org/10.48550/arXiv.2306.09987
- 5. Altayyar, M, Ali, S., **Larson, A.**, Boving, T., Thiem, L., Akanda, A., 2024. Quantifying groundwater depletion in Arabian Peninsula transboundary aquifer systems: Understanding natural and anthropogenic drivers. *Groundwater for Sustainable Development*, 26, 101293. https://doi.org/10.1016/j.gsd.2024.101293
- 6. **Larson, A.**, Dove, L., Parent, J., Pradhanang, S., Boving, T., Akanda, A., 2024. Holistic Water Cycle Analysis of Two Transboundary River Watersheds: Leveraging the Confluence of Land Data Assimilation Outputs, Satellite Observations of Ocean Temperature, Ground Truth Flow Measurements, and Machine Learning Signal Processing Technologies. *Submitted*.

Technical Projects

(2020)

(2024)	Built several prototype web dashboards using a full-stack of open source front-end and back-end software. Investigated availability of high quality high resolution meteorological data in New England and along the Western Atlantic coastline. Pair programmed with artificial intelligence to write/use applications in several languages (JavaScript, Python, Rust, R, MATLAB, .html, .sh, and .css). Updated 3CRS.org website via wix.com. Evaluated the technical environment and wrote a strategic plan for the improvement / development of the NSF 3CRS and Georgia CEAR Hub dashboards.
(2022 – 2023)	Worked with deep convolutional neural networks using the GLDAS & NLDAS surface and subsurface flow parameters as predictors of large basin streamflow for various size river basins in the USA. I acquired image and vector data, performed upsampling, downsampling, geographical constraining and filtering the data, and exporting the data post treatment to a variety of formats for analysis (.gif, .nc, .npy, .pt)
(2022)	Investigated soil moisture data assimilation products based on the Soil Moisture Active Passive (SMAP) satellite mission, improving its spatial resolution, and its potential for use as an input to watershed calibration via a regression neural network.
(2021 – 2022)	Employed neural network techniques of varying complexities (multilayer perceptrons, residual networks, adversarial networks, autoencoders) for fusing simulated and satellite-derived global sea surface temperature (SST) fields.
(2020 – 2022)	Created and maintained an open jupyter notebook to serve as a small educational tool for graduate students to remote sensing with python. I created animations and visuals for various funding proposals.
(2021)	Performed literature review of climate extremes, hydrology and associated waterborne disease (cholera) risk for use in a feasibility experiment about leveraging meteorological, climatological, and demographic data to predict cholera risk.
(2020)	Combined high speed digital image correlation & in situ blast sensors to obtain profiles of explosions to model the solid mechanics phenomena that occur with underwater blasts, simulating naval warfare events.
(2020)	Used the Soil Water and Assessment Tool (SWAT), Remote Sensing and GIS software to model and calibrate watersheds in RI in order to validate modeling/calibration with and without ground truth streamflow.
(2020)	Created visualizations using Massachusetts DOT traffic count data and satellite air quality data (Sentinel 5P observations of NO ₂) to visualize change in traffic and

emission due to the coronavirus pandemic.

New Hampshire in 2017–2018.

Utilized Google Earth Engine and Landsat satellite imagery to extract information about the extent and year over year impact of wildfire in the Lost River region of